

Procurement of Plant Design, Supply, Delivery, Installation, Testing and Commissioning of New Butwal -Nepal/India Border 400kV D/C Transmission Line (18 km)

MCA-N/ETP/CB/006

ADDENDUM #4

Date of Issue: 30 April 2024

This Addendum No. 4 modifies respective portions of the Bidding Document issued on 15 March 2024 and amended through Addendum No. 1 on 8 April 2024 and Addendum No 2 and No 3 on 16 April 2024. The changes, as indicated below, are effective on the date of issue of this Addendum.

Except as expressly amended by this Addendum, all other terms and conditions of the Bidding Document - issued on 15 March 2024 and amended through Addendum No. 1 issued on 8 April 2024 and Addendum No 2 and No 3 on 16 April 2024 remains unchanged and shall remain in full force and effect in accordance with their terms.

General Line Ch	aracteristics
-----------------	---------------

SN	Pages/Paragraph	Amendments
	Part 1. Section IV.	Add a note at the end of BOQ for Schedule No. 1. Design Services as follows: Note: If the offered tower family is already type tested, the Contractor
1.	Submission Forms, Price Schedule, BOQ for Schedule No. 1. Design Ser- vices, PDF Page 55 of 186	shall submit the proposed structure designs and prototype test report for review and approval by the Engineer. If the Engineer determines that the submittal is not acceptable, then the Contractor shall have to carry out the protype testing of the tower as per Employer's requirement. Irrespec- tive of availability of earlier tower design and previous successful pro- totype testing, the Bidder is required to quote the cost of design and pro- totype testing of the Towers in the above Price Schedule for evaluation and comparison purpose. If during contract implementation the existing design and prototype testing report offered by the Contractor is accepted by the Engineer, then the associated cost submitted by the bidder as per the above price schedule will be deducted through variation.

		Add follo	a note at the end of BOQ for Sche ws:	dule No	o. 1. Design S	bervices as	
2.	Part 1, Section IV. Submission Forms, Breakdown of Price for Price Reasonability, BOQ for Sched- ule No. 1. Design Services, PDF Page 75 of 186	Note shall revie subm the p tive of totyp totyp Reas contr offer ated for P	Note: If the offered tower family is already type tested, the Contractor shall submit the proposed structure designs and prototype test report for review and approval by the Engineer. If the Engineer determines that the submittal is not acceptable, then the Contractor shall have to carry out the protype testing of the tower as per Employer's requirement. Irrespec- tive of availability of earlier tower design and previous successful pro- totype testing, the Bidder is required to quote the cost of design and pro- totype testing of the Towers in the above Breakdown of Price for Price Reasonability sheet for evaluation and comparison purpose. If during contract implementation the existing design and prototype testing report offered by the Contractor is accepted by the Engineer, then the associ- ated cost submitted by the bidder as per the above Breakdown of Price for Price Reasonability will be deducted through variation.				
		"Ite	Description	Uni	Required	Bidder	
		m		t		Guaran teed	
	Part 1, Section IV. Submission	4.6	Minimum clearances between conductors/live fittings and tower steel structure 400 kV:				
	Forms, Form TECH-11: Tech-		Under still air, phase to earth (lightning impulse)	m	3.15		
	ule 1. Technical Data Schedule, General		Under medium wind: 586 Pa, - 5°C, phase to earth (switching impulse)	m	2.85		
3.	Line Characteris- tics, Technical DATA Schedules – 400 kV Over-		Under high wind: 1103 Pa, 10°C, phase to earth (50 Hz power frequency)	m	1.0		
	head Transmission Line General Characteristics, Page 99, 100 (PDF Page 143 and 144), 4.6	" has l "	been replaced by:				
		Ite m	Description	Unit	Required	Bidder Guaran teed	
		4.6	Minimum clearances between conductors/live fittings and				

		tower steel structure 400 kV:			
		Wind Pressure conditions		Minimum Electrical clearances	
		For single suspension insulator strings			
		0 degree swing	mm	<mark>3150</mark>	
		22 degree swing	mm	3050	
		44 degree swing	mm	1860	
		For jumpers in tension insulator strings			
		0 degree swing	mm	<mark>3150</mark>	
		25 degree swing	mm	3050	
		40 degree swing	mm	1860	
		For pilot insulator strings			
		0 degree swing	mm	3150	
		15 degree swing	mm	3050	
		"			
	Part 2 – Em- ployer's Require- ment Section V -	"Bidders shall take into account the redu in order to reduce the dynamic air press and tower structures. By segmenting app file of the line routing through the use Criteria files, etc. within PLS-CADD li	ction of ure actin propriate of custo ne mode	air density wing on conduct ly, the longitu omized Weath el, the Bidder	th altitude tors, wires idinal pro- ner Loads, rs can cus-
4.	B1, 5.4.1.6 Air Density Factor, Page 16 (PDF	tomize the applicable loading conditions Design wind speeds are used over the en	s, as long ntire line	g as the same e length."	Reference
	Page 17)	has been replaced by:			
		"Air Density correction factor shall not	be consi	dered."	

5.	Part 2 – Em- ployer's Require- ment, Section V - B1, 5.4.1.7 Span Factor, Page 17 (PDF Page 18)	"Contractors shall also consider the use of IEC 60826 Span Factor GL (or its equivalent GC Factor, built within IS-802, 2015, where it com- bines height and span effects) to optimize the design. There are many examples from the preliminary design that illustrate how the use of the span factor can contribute to optimize line design." has been replaced by:
		"Span Factor is not required to be considered."
		The towers must be tested in accordance with IEC 60652: Lodding Tests on Overhead Line Structures, as well as guidelines from ASCE 10- 15: Design of Latticed Steel Transmission Structures and subjected to the loads as derived from the structure spotting, Design Criteria, IS 802, and IEC 60826. The proposed structure types, Design Criteria and test program must be submitted to the Engineer. Full scale testing of tower for Suspension Type (D1A) and Tension Tower (D1E) with highest body extension of maximum overturning moment, maximum uplift in maximum loading condition to be done."
		has been replaced by:
6.	Part 2 – Em- ployer's Require- ment, Section V - B1, 5.6 STRUC- TURES, 5.6.1 De- sign Parameters, point h, Page 29 (PDF Page 30 of 47)	"The towers must be tested in accordance with <i>IEC 60652: Loading</i> <i>Tests on Overhead Line Structures, as well as guidelines from ASCE 10-</i> <i>15: Design of Latticed Steel Transmission Structures and subjected to</i> <i>the loads as derived from the structure spotting, Design Criteria, IS 802,</i> <i>and IEC 60826.</i> The proposed structure types, Design Criteria and test program must be submitted to the Engineer. Full scale testing of tower for Suspension Type (D1A) and Tension Tower (D1E) with highest body extension of maximum overturning moment, maximum uplift in maximum loading condition to be done.
		If the offered tower family is already type tested, the Contractor shall submit the proposed structure designs and prototype test report for re- view and approval by the Engineer. If the Engineer determines that the submittal is not acceptable, then the Contractor shall have to carry out the protype testing of the tower as per Employer's requirement. Irrespec- tive of availability of earlier tower design and previous successful pro- totype testing of the Towers in the Price Schedule for evaluation and comparison purpose. If during contract implementation the existing de- sign and prototype testing report offered by the Contractor is accepted by the Engineer, then the associated cost submitted by the bidder as per the price schedule will be deducted through variation."

7.	Part 2 – Em- ployer's Require- ment, Section V - B1, 5.4.2 DE- TAILED RE- QUIREMENTS & SPECIFICA- TIONS, 5.4.2.1 Loading Condi- tions for Tower Structures, Table B1-1 Design Loading Condi- tions for Tower Structures, Page 19 (PDF Page 29), foot note 3	"The wind ered the e tors leng wind be m tive cons of th viola line adju Tabl be th for c Cdt has "The wind cered und to solution to solutio to to solution to solutio to to solutio to to to solutio	ese Design Wind Pressures and Wind Speeds are d pressures (and 10-minutes reference design w at 10 meters above ground, for Terrain Catego effective design wind pressures acting on towers, and shield wires, consideration of proper adjustn th and effective height above ground shall be tak d on cables, further adjustment through air dense hade by Contractor provided the selected factor height of each relevant cable in each individual ecutive spans making a segmented portion of th e length considered to be appropriate by the Con ation of theoretical minimum air density will be segment. For individual towers, the air density (sted provided taken constant over entire tower es shall be used for Air Density factor, and Table nose used for other situations (combined span a ables, height factors GT and Gi for tower and in on tower, etc)" been replaced by: ese Design Wind Pressures and Wind Speeds are d pressures (and 10-minutes reference design w at 10 meters above ground, for Terrain Cate 5.".	Reference dyna ind speeds) cor ory 2 of IS-802. insulators, con nent factors for a en into account. sity factor may is valid at the ef- span, in a serie ne transmission tractor. Not a si tolerated within (factor) may als height. IEC-60 es from IS-802 sind height factor sulators, drag fa	amic Isid- For duc- span For also ffec- es of line ngle any o be 0826 shall r Gc actor
			Wind Pressure conditions	Minimum Electrical clearances	
			A. For single suspension insulator strings		
	Part 2 Em-		1. 0 degree swing	3050 mm	
	ployer's Require-		2. 22 degree swing	3050 mm	
	ment, Section V - B1, 5.9.2 Clear-		3. 44 degree swing	1860 mm	
8.	ance to Struc-		B. For jumpers in tension insulator strings		
	Swing, Page 40		1. 0 degree swing		
	(PDF Page 41 of 47), the table		2. 25 degree swing	3050 mm	
	,,		4. 40 degree swing	1860 mm	
			C. For insulator strings		
			1. U degree swing	2050 -	
			2. 15 degree swing	3050 mm	

		has been replaced by:	
		Wind Pressure conditions	Minimum Electrical clearances
		A. For single suspension insulator strings	
		1. 0 degree swing	3050 mm
		2. 22 degree swing	3050 mm
		3. 44 degree swing	1860 mm
		B. For jumpers in tension insulator strings	
		1. 0 degree swing	<mark>3050 mm</mark>
		2. 25 degree swing	3050 mm
		3. 40 degree swing	1860 mm
		For pilot insulator strings	
		1. 0 degree swing	<mark>3050 mm</mark>
		2. 15 degree swing	<mark>3050 mm</mark>
9.	Part 2 – Em- ployer's Require- ment, Section V - B1, 5.9.4 Clear- ance to Struc- ture/Insulator Swing, Page 41 (PDF Page 42 of 47)	5.9.4 Clearance to Structure/Insulator Swing is o	leleted.
10.	Part 2 – Em- ployer's Require- ment, Section V - B1, Annex_B1, 4. Annex G PLS CADD	The old files "IB-NB_PLSCADD Backupfile_120 "new Butwal to India border_v1-001.bak" are delete link and replaced by :	62023-002.bak" and ed from the provided
	Files_Final Design	new butwar to mula border_v1 16v02_00 Mar.bak	

	Part 2 -	Additional Document named "Tender Level Document for Hardware
	Employer's	and Fitting for Insulator" provided as Annex A to this Addendum #4.
11.	Requirements	
	Section V - B1	
	Annex D Appen-	
	dix 8 - Insulator	
	Specification_	
	Hardware Specifi-	
	cation	
	Part 2 -	Add file named "Plan and Profile for 18km Transmission Line" as An-
	Part 2 - Employer's	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4
	Part 2 - Employer's Requirements	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4
	Part 2 - Employer's Requirements Section V - B1,	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4
12.	Part 2 - Employer's Requirements Section V - B1, Annex_B1, 5.	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4
12.	Part 2 - Employer's Requirements Section V - B1, Annex_B1, 5. Annex	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4
12.	Part 2 - Employer's Requirements Section V - B1, Annex_B1, 5. Annex C_Structure	Add file named "Plan and Profile for 18km Transmission Line" as Annex B of this Addendum #4
12.	Part 2 - Employer's Requirements Section V - B1, Annex_B1, 5. Annex C_Structure List_Final Design	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4
12.	Part 2 - Employer's Requirements Section V - B1, Annex_B1, 5. Annex C_Structure List_Final Design Report	Add file named "Plan and Profile for 18km Transmission Line" as An- nex B of this Addendum #4

Annexes

Sr. No.	Name of the Document	Document
A	Tender Level Document for Hardware and Fitting for Insulator1	240417_Hardware_Fi ttings.pdf
В	Plan and Profile for 18km Transmission Line	Plan_Profile_of_18km _400kV_TL_MCA-Nep

A Tender Level Document for Hardware and Fitting for Insulator1

TECHNICAL DETAILS:

- 1) ALL DIMENSIONS ARE IN MILLIMETER. 2) SLIPPING STRENGTH OF CLAMP BETWEEN 20 TO 29 kN. 5) MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 KV (RMS). 6) RIV AT 305 KV R.M.S. (DRY) BELOW 1000 MICROVOLTS. 7) HARDWARE TOLERANCES ON LENGTH ±2%. 10) TOTAL MASS OF ASSEMBLY : 85 kg (APPROX)

	400	Кν	
	STR	RING	FD
AGSC		M[

COMPONENT DETAILS

No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT	QTY.	FINISH	COMPONENT NO.
1	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	240 KN	1.600 KG	1	H. D. G.	DS : AS
2	Y-STRAP	MILD STEEL Fe-410, IS:2062	240 KN	3.200 KG	1	H. D. G.	DS : YS
3	YOKE PLATE	MILD STEEL Fe-410, IS:2062	240 KN	8.350 KG	1	H. D. G.	DS : YPT
4	BALL CLEVIS	FORGED STEEL CL-IV, IS:2004	120 KN	1.150 KG	2	H. D. G.	DS : BC
5	ARCING HORN	MILD STEEL Fe-410, IS:2062	1.5 KN	3.600 KG	2	H. D. G.	DS : AH
6	SOCKET CLEVIS	FORGED STEEL CL-IV, IS:2004	120 KN	1.350 KG	2	H. D. G.	DS : SC
7	YOKE PLATE	MILD STEEL Fe-410, IS:2062	240 KN	17.5 KG	1	H. D. G.	DS : YPL
8	GRADING RING	ALUMINIUM ALLOY 63400/6063, IS:733	1.5 KN	5.750 KG	1		DS : GR
9	CLEVIS EYE	FORGED STEEL CL-IV, IS:2004	70 KN	0.800 KG	4	H. D. G.	DS : CE
10	SUSPENSION CLAMP	ALUMINIUM ALLOY 4600, IS:617	70 KN	3.100 KG	4		DS : AGSC
11	ARMOUR ROD	HIGH TENSILE ALUMINIUM ROD 65032/6061,IS:733	343 N/mm2	5.200 KG	4 Sets		

3) BALL & SOCKET SIZE 20 mm AS PER IS:2486 (PART-II). 4) ALL FERROUS PARTS ARE HOT DIP GALVANISED & SPRING WASHER ELECTRO GALVANISED AS PER POWERGRID SPECIFICATION. 8) GENERAL TOLERANCE ±3% UNLESS OTHER WISE SPECIFIED. 9) MIN UTS OF STRING WITHOUT SUSPENSION CLAMP : 240 KN 11) EACH COMPONENT SHALL BE LEGIBLY AND INDELIBLBLY MARKED WITH TRADE MARK OF THE MANUFACTURER - "EMI" EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS, SECURITY CLIPS ETC

12) The drawing is indicative and for the tender purpose only.

400 KV DOUBLE I SUSPENSION IR QUADRUPLE ACSR SE CONDUCTOR

TECHNICAL DETAILS:

- 1) ALL DIMENSIONS ARE IN MILLIMETER.

- AS PER POWERGRID SPECIFICATION
- 5) MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 kV (RMS).
- 6) RIV AT 305 KV RMS (DRY) BELOW 1000 MICROVOLTS.
- 7) HARDWARE TOLERANCES ON LENGTH ±2%.
- 8) GENERAL TOLERANCE ±3% UNLESS OTHER WISE SPECIFIED.
- 9) SECURITY CLIP : STAINLESS STEEL
- 10) MIN UTS OF STRING WITHOUT TENSION CLAMP : 640 kN.
- 11) TOTAL MASS OF THE ASSEMBLY : 261.72 kg (APPROX)
- SECURITY CLIPS ETC .

COMPONENT DETAILS

19	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	320 KN.	2.370 KG	2	H. D. G.	QT : AS3
18	SPACER (250 mm)	ALUMINIUM ALLOY 4600,IS:733		1.100 KG	1		QT : RSP
17	CORONA CONTROL RING	ALUMINIUM ALLOY 63400/6063 IS:733	1.5 KN	15.800 KG	2,SET		QT : CCR
16	COMPRESSION DEADEND	ALUMINIUM ALLOY 63400/6063 IS:733	153.2 KN(min)	6.500 KG	4		QT : DE
15	Y-TYPE STRAP	MILD STEEL Fe-410 IS:2062	160 KN	3.600 KG	2	H. D. G.	QT : YS
14	SAG ADJUSTING PLATE	MILD STEEL Fe-410 IS:2062	160 KN	6.900 KG	4	H. D. G.	QT : SAP
13	CLEVIS EYE	FORGED STEEL CL-IV, IS:2004	160 KN	1.250 KG	4	H. D. G.	QT : CE
12	YOKE PLATE	MILD STEEL Fe-410 IS:2062	320 KN.	9.800 KG	2	H. D. G.	QT :YPL1
11	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	160 KN.	1.250 KG	12	H. D. G.	QT : AS2
10	YOKE PLATE	MILD STEEL Fe-410 IS:2062	320 KN.	9.700 KG	2	H. D. G.	QT : YPL
9	SOCKET CLEVIS	FORGED STEEL CL-IV, IS:2004	160 KN	1.500 KG	4	H. D. G.	QT : SC
8	ARCING HORN	MILD STEEL Fe-410 IS:2062	1.5 KN	2.670 KG	2	H. D. G.	QT : AH
7	BALL CLEVIS	FORGED STEEL CL-IV, IS:2004	160 KN	1.150 KG	4	H. D. G.	QT : BC
6	YOKE PLATE	MILD STEEL Fe-410 IS:2062	320 KN.	10.300 KG	2	H. D. G.	QT : YPT1
5	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	320 KN.	2.370 KG	2	H. D. G.	QT : AS1
4	YOKE PLATE	MILD STEEL Fe-410 IS:2062	640 KN.	21.300 KG	1	H. D. G.	QT : YPT
3	STRAP	MILD STEEL Fe-410 IS:2062	640 KN.	15.500 KG	1,SET	H. D. G.	QT : SP
2	EXTENSION LINK	MILD STEEL Fe-410 IS:2062	640 KN.	13 KG	1	H. D. G.	QT : EL
1	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	640 KN.	7 KG	2	H. D. G.	QT : AS
Sr.No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT	QTY.	FINISH	COMPONENT N

400 KV, QUADRUPLE TENSION STRING SUITABLE FOR QUADRUPLE ACSR MODSE CONDUCTOR

2) SLIPPING STRENGTH OF DEAD END ASSEMBLY : 154 kN (Min.). 3) BALL & SOCKET SIZE : 20 mm AS PER IS : 2486 (PART-II). 4) ALL FERROUS PARTS HOT DIP GALVANIZED & SPRING WASHER ELECTRO GALVANISED 12) EACH COMPONENT SHALL BE LEGIBLY & INDELIBLBLY MARKED WITH TRADE MARK OF THE

MANUFACTURER - " EMI " EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS ,

13) The drawing is indicative and for the tender purpose only.

TECHNICAL DETAILS:

- 1) ALL DIMENSIONS ARE IN MILLIMETER.
- 2) <u>SLIPPING STRENGTH OF DEAD END ASSEMBLY : 154 kN (Min.)</u>.
- 3) BALL & SOCKET SIZE : 20 mm AS PER IS : 2486 (PART-II).
- AS PER POWERGRID SPECIFICATION
- 5) MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 kV (RMS).
- 6) <u>RIV AT 305 KV RMS (DRY) BELOW 1000 MICROVOLTS.</u>
- 7) <u>HARDWARE TOLERANCES ON LENGTH ±2%.</u>
- 8) GENERAL TOLERANCE ±3% UNLESS OTHER WISE SPECIFIED.
- 9) SECURITY CLIP : STAINLESS STEEL
- 10) <u>min uts of string without tension clamp : 1280 kn.</u>
- 11) <u>TOTAL MASS OF THE ASSEMBLY : 261.72 kg (APPROX)</u>
- SECURITY CLIPS ETC .

400 KV, QUADRUPLE TENSION STRING SUITABLE FOR QUADRUPLE ACSR MOOSE CONDUCTOR

19	ANCH O R SHACKLE	FORGED STEEL CL-IV, IS:2004	32 0 KN.	2.37 0 KG	2	H. D. G.	QT : AS3
1 8	SPACER (250 mm)	ALUMINIUM ALLOY 4600,IS:733		1.1 00 KG	1		OT : RSP
17	CORONA CONTROL RING	ALUMINIUM ALLOY 63400/6063 IS:733	1.5 KN	15 .800 KG	2,SET		QT : CCR
16	COMPRESSION DEADEND	ALUMINIUM ALLOY 63400/6063 IS:733	153.2 KN(min)	6.5 00 KG	4		QT : DE
15	Y-TYPE STRAP	MILD STEEL Fe-410 IS:2062	160 KN	3.6 00 kg	2	H. D. G.	OT : YS
14	SAG A d justing plate	MILD STEEL Fe-410 IS:2062	16 0 KN	6.9 00 kg	4	H. D. G.	OT : SAP
13	CLEVIS EYE	FORGED STEEL CL-IV, IS:2004	16 0 KN	1.25 0 KG	4	H. D. G.	QT : CE
12	Y o ke plate	MILD STEEL Fe-410 IS:2062	32 0 KN.	9 .800 KG	2	H. D. G.	QT :YPL1
11	ANCH O R SHACKLE	FORGED STEEL CL-IV, IS:2004	16 0 KN.	1.25 0 kg	12	H. D. G.	OT : AS2
10	Y o ke plate	MILD STEEL Fe-410 IS:2062	32 0 KN.	9.7 00 KG	2	H. D. G.	QT : YPL
9	S O CKET CLEVIS	FORGED STEEL CL-IV, IS:2004	16 0 KN	1.5 00 KG	4	H. D. G.	QT : SC
8	ARCING H O RN	MILD STEEL Fe-410 IS:2062	1.5 KN	2.67 0 KG	2	H. D. G.	QT : AH
7	BALL CLEVIS	FORGED STEEL CL-IV, IS:2004	16 0 KN	1.15 0 kg	4	H. D. G.	QT : BC
6	Y o ke plate	MILD STEEL Fe-410 IS:2062	32 0 KN.	1 0.300 KG	2	H. D. G.	QT : YPT1
5	ANCH O R SHACKLE	FORGED STEEL CL-IV, IS:2004	32 0 KN.	2 . 37 0 KG	2	H. D. G.	QT : AS1
4	Y o ke plate	MILD STEEL Fe-410 IS:2062	64 0 KN.	21 .300 KG	1	H. D. G.	QT : YPT
3	STRAP	MILD STEEL Fe-410 IS:2062	64 0 KN.	15.5 00 KG	1,SET	H. D. G.	QT : SP
2	Extensi o n link	MILD STEEL Fe-410 IS:2062	64 0 KN.	13 KG	1	H. D. G.	QT : EL
1	ANCH O R SHACKLE	FORGED STEEL CL-IV, IS:2004	64 0 KN.	7 KG	2	H. D. G.	QT : AS
No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT	QTY.	FINISH	COMPONENT NO.

4) <u>ALL FERROUS PARTS HOT DIP GALVANIZED & SPRING WASHER ELECTRO GALVANISED</u>

2) <u>Each o**o**mponent shall be legibly & in**d**eliblbly marke**d** with tra**d**e mark of the .</u> MANUFACTURER - " EMI " EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS ,

13) The drawing is indicative and for the tender purpose only.

400 K∨ DOUBLE I SUSPENSION STRING FOR QUADRUPLE ACSR MOOSE CONDUCTOR

14	SPACER (250 mm)	ALUMINIUM ALLOY 4600,IS:617		1.1 00 KG	1		ST : RSP
13	COMPRESSION DEADEND	ALUMINIUM ALLOY 63400/6063 IS:733	1 53.2 KN(min)	6.5 00 KG	4		ST : DE
12	ANCH o r shackle	FORGED STEEL CL-IV, IS:2004	7 0 KN	1 .030 KG	4	H. D. G.	ST : AS2
1 1	Y-STRAP	MILD STEEL Fe-410, IS:2062	7 0 KN.	2.2 00 KG	2	H. D. G.	ST : YS
10	Y o ke plate	MILD STEEL Fe-4 0, IS:2062	7 0 KN.	5 .800 KG	2	H. D. G.	ST : YP1
9	ANCH o r shackle	FORGED STEEL CL-IV, IS:2004	7 0 KN	0.700 KG	4	H. D. G.	ST : AS1
8	Y o ke plate	MILD STEEL Fe-4 0, IS:2062	12 0 KN	6 .8 5 0 kg	1	H. D. G.	ST : YP
7	S O CKET CLEVIS	FORGED STEEL CL-IV, IS:2004	12 0 KN	1.35 0 KG	1	H. D. G.	ST : SC
6	CORONA CONTROL RING	ALUMINIUM ALL O Y 634 00 /6 0 63, IS:733	1.5 KN	7 .500 KG	2,SETS		ST : CCR
5	ARCING H O RN	MILD STEEL Fe-410, IS:2062	1.5 KN	2 .000 KG	1	H. D. G.	ST : AH
4	HORN HOLDER BALL EYE	FORGED STEEL CL-IV, IS:2004	12 0 KN	0.700 KG	1	H. D. G.	ST : HHB
3	Extensi o n link	MILD STEEL Fe-410, IS:2062	12 0 KN	8.200 KG	1	H. D. G.	ST : EL
2	TURN BUCKLE	FORGED STEEL CL-IV, IS:2004	12 0 KN	4.1 00 KG	1	H. D. G.	ST : TB
1	ANCH o r shackle	FORGED STEEL CL-IV, IS:2004	12 0 KN	1.2 00 KG	6	H. D. G.	ST : AS
Sr.No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT	୍ସTY.	FINISH	COMPONENT NO

4) <u>All Ferrous Parts hot Dip Galvanised & Electro Galvanised as Per</u>

12) EACH COMPONENT SHALL BE LEGIBLY & INDELIBLBLY MARKED WITH TRADE MARK OF THE MANUFACTURER - " EMI " EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS ,

13) The drawing is indicative and for the tender purpose only.

COMPONENT DETAILS							
10	COUNTER WEIGHT ASSEMBLY	CAST IRON IS : 210		203.000 KG	1,SET	H. D. G.	SSP : CW
9	SUSPENSION CLAMP	ALUMINIUM ALLOY 4600, IS:617	70 KN	2.900 KG	4		SSP : SCL
8	CLEVIS CONNECTOR	FORGED STEEL CL-IV, IS:2004	70 KN	1.1 KG	4	H. D. G.	SSP : CC
7	YOKE PLATE	MILD STEEL Fe-410 IS:2062	120 KN	17.4 KG	1	H. D. G.	SSP : YP
6	SOCKET CLEVIS	FORGED STEEL CL-IV, IS:2004	120 KN	1.350 KG	1	H. D. G.	SSP : SC
5	GRADING RING	IS:733, ALUMINIUM ALLOY 63400/6063	1.5 KN	2.750 KG	1		SSP : GR
4	ARCING HORN	MILD STEEL Fe-410 IS:2062	1.5 KN	3.060 KG	1	H. D. G.	SSP : AH
3	HORN HOLDER BALL EYE	FORGED STEEL CL-IV, IS:2004	120 KN	0.700 KG	1	H. D. G.	SSP : HHB
2	EXTENSION LINK	MILD STEEL Fe-410 IS:2062	120 KN	1.900 KG	1	H. D. G.	SSP : EL
1	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	120 KN	1.200 KG	2	H. D. G.	SSP : AS
No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT	QTY.	FINISH	COMPONENT NO.

400 KV SINGLE I SUSPENSION PILOT STRING SUITABLE FOR QUADRUPLE ACSR MODSE CONDUCTOR

4) ALL FERROUS PARTS ARE HOT DIP GALVANIZED & SPRING WASHER ELECTRO GALVANISED 12) EACH COMPONENT SHALL BE LEGIBLY & INDELIBLBLY MARKED WITH TRADE MARK OF THE MANUFACTURER - " EMI " EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS ,

B Plan and Profile for 18km Transmission Line

12 TOWER TYPI LINE ANGLE X=174075.74 Y=3041878.21 Z = 104.5	E D A SHT = 59.5 M = 0°000 0 240				
	220				
	200				
	180				
384	160				
	140				
-100°C	120				
	100				
45+00	08				
12 House					
ct : Client : ed Survey and updated Line in 400kV Transmission Line noment Millennium Challenge Account Nepal (MCA-Nepal)					
	Consultant:	June , 2023			
nct : smission Line Alignment Butwal 400kV TL	POWER GRID CORPORATION TO POWERGE OF INDIA LIMITED AND JADE CONSULT P. LTD, NEPAL AS SUB-CONSULTANT	Sheet no. 2	Size A3		

	Consultant.	June , 2023	
ct :	POWER GRID CORPORATION		<u>.</u>
mission Line Alignment	OF INDIA LIMITED	Sheet no. 6	Size
Butwal 400kV TL	JADE CONSULT P. LTD, NEPAL		A3

