MILLENNIUM CHALLENGE ACCOUNT NEPAL (MCA-NEPAL)

Procurement of Plant Design, Supply, Delivery, Installation, Testing and Commissioning of New Butwal -Nepal/India Border 400kV D/C Transmission Line (18 km)

MCA-N/ETP/CB/006

ADDENDUM \#4

Date of Issue: 30 April 2024
This Addendum No. 4 modifies respective portions of the Bidding Document issued on 15 March 2024 and amended through Addendum No. 1 on 8 April 2024 and Addendum No 2 and No 3 on 16 April 2024. The changes, as indicated below, are effective on the date of issue of this Addendum.

Except as expressly amended by this Addendum, all other terms and conditions of the Bidding Document - issued on 15 March 2024 and amended through Addendum No. 1 issued on 8 April 2024 and Addendum No 2 and No 3 on 16 April 2024 remains unchanged and shall remain in full force and effect in accordance with their terms.

General Line Characteristics

SN	Pages/Paragraph	Amendments
	Part 1, Section IV. Submission Forms, Price Schedule, BOQ for Schedule No. $\mathbf{1 .}$ Design Ser- vices, PDF Page $\mathbf{5 5}$ of $\mathbf{1 8 6}$	Add a note at the end of BOQ for Schedule No. 1. Design Services as follows:
Note: If the offered tower family is already type tested, the Contractor shall submit the proposed structure designs and prototype test report for review and approval by the Engineer. If the Engineer determines that the submittal is not acceptable, then the Contractor shall have to carry out the protype testing of the tower as per Employer's requirement. Irrespec- tive of availability of earlier tower design and previous successful pro- totype testing, the Bidder is required to quote the cost of design and pro- totype testing of the Towers in the above Price Schedule for evaluation and comparison purpose. If during contract implementation the existing design and prototype testing report offered by the Contractor is accepted by the Engineer, then the associated cost submitted by the bidder as per the above price schedule will be deducted through variation.		

2.	Part 1, Section IV. Submission Forms, Breakdown of Price for Price Reasonability, BOQ for Schedule No. 1. Design Services, PDF Page 75 of 186	Note: If the offered tower family is already type tested, the Contractor shall submit the proposed structure designs and prototype test report for review and approval by the Engineer. If the Engineer determines that the submittal is not acceptable, then the Contractor shall have to carry out the protype testing of the tower as per Employer's requirement. Irrespective of availability of earlier tower design and previous successful prototype testing, the Bidder is required to quote the cost of design and prototype testing of the Towers in the above Breakdown of Price for Price Reasonability sheet for evaluation and comparison purpose. If during contract implementation the existing design and prototype testing report offered by the Contractor is accepted by the Engineer, then the associated cost submitted by the bidder as per the above Breakdown of Price for Price Reasonability will be deducted through variation.				
3.	Part 1, Section IV. Submission Forms, Form TECH-11: Technical Data Schedule 1. Technical Data Schedule, General Line Characteristics, Technical DATA Schedules - 400 kV Overhead Transmission Line General Characteristics, Page 99, 100 (PDF Page 143 and 144), 4.6	"	Description	$\begin{gathered} \text { Uni } \\ \mathbf{t} \end{gathered}$	Required	Bidder Guaran teed
		4.6	Minimum clearances between conductors/live fittings and tower steel structure 400 kV :			
			Under still air, phase to earth (lightning impulse)	m	3.15	
			Under medium wind: 586 Pa , $5^{\circ} \mathrm{C}$, phase to earth (switching impulse)	m	2.85	
			Under high wind: 1103 Pa , $10^{\circ} \mathrm{C}$, phase to earth Hz power frequency)	m	1.0	
		has been replaced				
		Ite m	Description	Unit	Required	Bidder Guaran teed
		4.6	Minimum clearances between conductors/live fittings and			

| | | tower steel structure 400 kV: | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5.	Part 2 - Employer's Requirement, Section V B1, 5.4.1.7 Span Factor, Page 17 (PDF Page 18)	"Contractors shall also consider the use of IEC 60826 Span Factor GL (or its equivalent GC Factor, built within IS-802, 2015, where it combines height and span effects) to optimize the design. There are many examples from the preliminary design that illustrate how the use of the span factor can contribute to optimize line design." has been replaced by: "Span Factor is not required to be considered."
6.	Part 2 - Employer's Requirement, Section V B1, 5.6 STRUCTURES, 5.6.1 Design Parameters, point h, Page 29 (PDF Page 30 of 47)	"The towers must be tested in accordance with IEC 60652: Loading Tests on Overhead Line Structures, as well as guidelines from ASCE 1015: Design of Latticed Steel Transmission Structures and subjected to the loads as derived from the structure spotting, Design Criteria, IS 802, and IEC 60826. The proposed structure types, Design Criteria and test program must be submitted to the Engineer. Full scale testing of tower for Suspension Type (D1A) and Tension Tower (D1E) with highest body extension of maximum overturning moment, maximum uplift in maximum loading condition to be done." has been replaced by:
		"The towers must be tested in accordance with IEC 60652: Loading Tests on Overhead Line Structures, as well as guidelines from ASCE 1015: Design of Latticed Steel Transmission Structures and subjected to the loads as derived from the structure spotting, Design Criteria, IS 802, and IEC 60826. The proposed structure types, Design Criteria and test program must be submitted to the Engineer. Full scale testing of tower for Suspension Type (D1A) and Tension Tower (D1E) with highest body extension of maximum overturning moment, maximum uplift in maximum loading condition to be done.
		If the offered tower family is already type tested, the Contractor shall submit the proposed structure designs and prototype test report for review and approval by the Engineer. If the Engineer determines that the submittal is not acceptable, then the Contractor shall have to carry out the protype testing of the tower as per Employer's requirement. Irrespective of availability of earlier tower design and previous successful prototype testing, the Bidder is required to quote the cost of design and prototype testing of the Towers in the Price Schedule for evaluation and comparison purpose. If during contract implementation the existing design and prototype testing report offered by the Contractor is accepted by the Engineer, then the associated cost submitted by the bidder as per the price schedule will be deducted through variation."

7.	Part 2 - Employer's Requirement, Section V B1, 5.4.2 DETAILED REQUIREMENTS \& SPECIFICATIONS, 5.4.2.1 Loading Conditions for Tower Structures, Table B1-1 Design Loading Conditions for Tower Structures, Page 19 (PDF Page 29), foot note 3	"These Design Wind Pressures and Wind Speeds are Reference dynamic wind pressures (and 10-minutes reference design wind speeds) considered at 10 meters above ground, for Terrain Category 2 of IS-802. For the effective design wind pressures acting on towers, insulators, conductors and shield wires, consideration of proper adjustment factors for span length and effective height above ground shall be taken into account. For wind on cables, further adjustment through air density factor may also be made by Contractor provided the selected factor is valid at the effective height of each relevant cable in each individual span, in a series of consecutive spans making a segmented portion of the transmission line of the length considered to be appropriate by the Contractor. Not a single violation of theoretical minimum air density will be tolerated within any line segment. For individual towers, the air density (factor) may also be adjusted provided taken constant over entire tower height. IEC-60826 Tables shall be used for Air Density factor, and Tables from IS-802 shall be those used for other situations (combined span and height factor Gc for cables, height factors GT and Gi for tower and insulators, drag factor Cdt on tower, etc..)" has been replaced by: "These Design Wind Pressures and Wind Speeds are Reference dynamic wind pressures (and 10 -minutes reference design wind speeds) considered at 10 meters above ground, for Terrain Category 2 of IS-8022015.".	
8.	Part 2 - Employer's Requirement, Section V B1, 5.9.2 Clearance to Structure/Insulator Swing, Page 40 (PDF Page 41 of 47), the table	Wind Pressure conditions A. For single suspension insulator strings	Minimum Electrical clearances
		1. 0 degree swing	3050 mm
		2. 22 degree swing	3050 mm
		3. 44 degree swing	1860 mm
		B. For jumpers in tension insulator strings	
		1. 0 degree swing	
		2. 25 degree swing	3050 mm
		4. 40 degree swing	1860 mm
		C. For insulator strings	
		1. 0 degree swing	
		2. 15 degree swing	3050 mm

		has been replaced by:	
		Wind Pressure conditions	Minimum Electrical clearances
		A. For single suspension insulator strings	
		1. 0 degree swing	3050 mm
		2. 22 degree swing	3050 mm
		3. 44 degree swing	1860 mm
		B. For jumpers in tension insulator strings	
		1. 0 degree swing	3050 mm
		2. 25 degree swing	3050 mm
		3. 40 degree swing	1860 mm
		For pilot insulator strings	
		1. 0 degree swing	3050 mm
		2. 15 degree swing	3050 mm
9.	Part 2 - Employer's Requirement, Section V B1, 5.9.4 Clearance to Structure/Insulator Swing, Page 41 (PDF Page 42 of 47)	5.9.4 Clearance to Structure/Insulator Swing is	leted.
10.	Part 2 - Employer's Requirement, Section V B1, Annex_B1, 4. Annex G_PLS_CADD Files_Final Design Report	The old files "IB-NB_PLSCADD Backupfile_120 "new Butwal to India border_v1-001.bak" are dele link and replaced by : "new butwal to india border_v1 rev02_06 Mar.bak"	2023-002.b from the p

11.	Part 2 Employer's Requirements Section V-B1 Annex D Appendix 8 - Insulator Specification_ Hardware Specification	Additional Document named "Tender Level Document for Hardware and Fitting for Insulator" provided as Annex A to this Addendum \#4.
12.	Part 2 - Employer's Requirements Section V B1, Annex_B1, 5. Annex C_Structure List_Final Design Report	Add file named "Plan and Profile for 18 km Transmission Line" as Annex B of this Addendum \#4

Annexes

Sr. No.	Name of the Document	Document		
A	Tender Level Document for Hardware and Fitting for Insulator 1	240417_Hardware_fi tings.pdf		
B	Plan and Profile for 18km Transmission Line	Plan_Profileof_18km -400k_TL_MCA-Nep		

A Tender Level Document for Hardware and Fitting for Insulator1

TECHNICAL DETAILS:

1) ALL DIMENSIONS ARE IN MILLIMETER.
2) SLIPPING STRENGTH OF CLAMP BETWEEN 20 TO 29 kN .
3) BALL \& SOCKET SIZE 20 mm AS PER IS:2486 (PART-II).
4) ALL FERROUS PARTS ARE HOT DIP GALVANISED \& SPRING WASHER ELECTRO GALVANISED AS PER POWERGRID SPECIFICATION.
5) MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 KV (RMS).
6) RIV AT 305 KV R.M.S. (DRY) BELOW 1000 MICROVOLTS.
7) HARDWARE TOLERANCES ON LENGTH $\pm 2 \%$.
8) GENERAL TOLERANCE $\pm 3 \%$ UNLESS OTHER WISE SPECIFIED.
9) MIN UTS OF STRING WITHOUT SUSPENSION CLAMP : 240 kN
10) IOTAL MASS OF ASSEMBLY: 85 kg (APPROX)
11) EACH COMPONENT SHALL BE LEGIBLY AND INDELIBLBLY MARKED WITH TRADE MARK OF THE MANUFACTURER - "EMI" EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS, SECURITY CLIPS ETC
12) The drawing is indicative and for the tender purpose only.

COMPONENT DETAILS

11 ARMOUR ROD

TECHNICAL DETAILS:

1) ALL DIMENSIONS ARE IN MILLIMETER.
2) SLIPPING STRENGTH OF DEAD END ASSEMBLY: 154 kN (Min.).
3) BALL \& SOCKET SIZE : 20 mm AS PER IS: 2486 (PART-II).
4) ALL FERROUS PARTS HOT DIP GALVANIZED \& SPRINC WASHER ELECTRO GALVANISED AS PER POWERGRID SPECIFICATION
MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 kV (RMS).
5) RIV AT 305 KV RMS (DRY) BELOW 1000 MICROVOLTS.
6) HARDWARE TOLERANCES ON LENGTH $\pm 2 \%$.
7) GENERAL TOLERANCE $\pm 3 \%$ UNLESS OTHER WISE SPECIFIED.
8) SECURITY CLIP : STAINLESS STEEL
9) MIN UTS OF STRING WITHOUT TENSION CLAM : 1280 kN .
10) IOTAL MASS OF THE ASSEM $3 L Y: 261.72 \mathrm{~kg}$ (APPROX)
11) EACH COMPONENT SHALL BE LEGIBLY \& INDELIBLBLY MARKED WITH TRADE MARK OF THE. MANUFACTURER - "EMI" EXCLUDING SMALL SUBCOM ONENTS VIZ. SPRING WASHERS. SECURITY CLIPS ETC.
12) The drawing is indicative and for the tender purpose only.

400 KV. QUADRUPLE TENSIDN STRING SUITABLE FIR QUADRUPLE ACSR MIDSE CDNDUCTIR

19	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	320 kN .	2.370 KG	2	H. D. C.	OT : AS3
8	SPACER (250 mm)	ALLMINUM ALLOY 4600,15:733	----	. 100 KG	1	----	OT : RSP
17	CORONA CONTROL RING	ALUMINIUM ALLOY 63400/6063 15:733	1.5 kN	15.800 KG	2,SET	----	OT : CCR
16	COMPRESSION DEADEND	ALUMINIUM ALLOY 63400/6063 15:733	153.2 kN (min)	6.500 kc	4	---	OT : DE
15	Y-TY PE STRAP	MILD STEEL Fe-4 0 IS:2062	160 kN	3.000 Kg	2	H. D. C.	OT : Y S
4	SAC ADJUSTINC PLATE	MILD STEEL Fe-4 0 15:2062	0 KN	6.900 Kc	4	H. D. C.	OT : SAP
13	CLEVIS EYE	FORGED STEEL CL-IV, IS:2004	160 kN	1.250 KG	4	H. D. C.	OT : CE
12	YOKE PLATE	MILD STEEL Fe-410 15:0062	32 kN .	. 800 KG	2	H. D. G.	OT :YPL1
11	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:004	160 kN .	1.250 KG	12	H. D. C.	OT : AS2
0	YOKE PLATE	MILD STEEL Fe-40 IS:0	0 kN .	9.700 KG	2	H. D. G.	OT : YpL
9	OCKET CLEVIS	FORGED STEEL CL-IV, IS:2004	0 KN	1.500 Kc	4	H. D. C.	QT : SC
8	ARCINC HORN	MILD STEEL Fe-410 15:062	1.5 kN	2.670 KC	2	H. D. G.	OT : AH
7	BALL CLEVIS	FORGED STEEL CL-IV, 15:004	0 kN	1.150 Kc	4	H. D. G.	OT : BC
6	YOKE PLATE	MILD STEEL Fe-410 15:0062	320 kN .	10.300 Kc	2	H. D. G.	OT : YPT1
5	ANCHOR SHACKLE	FORGED STEEL CL-IV, 15:2004	320 kN .	2.370 KG	2	H. D. C.	OT : AS1
4	YOKE PLATE	MILD STEEL Fe-410 15:2062	640 kN .	21.300 KG	1	H. D. ©.	OT : YPT
3	STRAP	MILD STEEL Fe-4 0 1: 0062	640 kN .	15.500 K	1,SET	H. D. G.	QT : SP
2	EXTENSION LINK	MILD STEEL Fe-40 15:062	640 kN .	13 K	1	H. D. C.	OT : EL
1	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	640 kN .	7 KG	2	H. D. C.	OT : AS
No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT	QTY.	FINISH	COMPONENT NO.

TECHNICAL DETAILS:

1) ALL DIMENSIONS ARE IN MILLIMETER.
2) SLIPPING STRENGTH OF CLAM : 153.2 kN (Min.).
3) BALL \& SOCKET SIZE 20 mm AS PER IS:2486. (PART-II).
4) ALL FERROUS PARTS HOT DIP GALVANISED \& ELECTRO GALVANISED AS PER OWERGRID SDECIFICATION
5) MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 KV (RMS).
6) RIV AT 305 KV RMS (DRY) BELOW 1000 MICROVOLTS.
7) HARDWARE TOLERANCES ON LENCTH $\pm 2 \%$.
8) GENERAL TOLERANCE $\pm 3 \%$ UNLESS OTHER WISE SPECIFIED.
9) SECURITY CLIP : STAINLESS STEEL
10) MIN UTS OF STRING WITHOUT TENSION CLAMP : 120 kN
11) TOTAL MASS OF THE ASSEMBLY: 95.42 kg (APPROX)
12) EACH COMPONENT SHALL BE LEGIBLY \& INDELIBLBLY MARKED WITH TRADE MARK OF THE. MANUFACTURER - "EMI" EXCLUDING SMALL SUBCOM ONENTS VIZ. SPRING WASHERS. SECURITY CLIPS ETC.
13) The drawing is indicative and for the tender purpose only.

400 KV DGUBLE I SUSPENSIDN STRING FGR QUADRUPLE ACSR MIDSE CINDUCTIR

4	SPACER (250 mm)	ALLMINIUM ALLOY 4600,IS:617	----	1.100 Kc	K	1	----	ST : RSP	
13	OMPRESSION DEADEND	ALUMINIUM ALLOY 63400/6063 15:733	$153.2 \mathrm{KN}(\mathrm{min})$	6.500 K	KG	4	----	ST : DE	
12	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	70 kN	. 030 Kc	KG	4	H. D. G.	ST : AS2	
11	Y-STRAP	MILD STEEL Fe-410, IS:2062	70 kN .	2.200 K	KG	2	H. D. G.	ST : YS	
0	YOKE PLATE	MILD STEEL Fo-40, IS:2062	70 kN .	5.800 KC	KG	2	H. D. G.	ST : Y ${ }^{\text {P }}$	
9	ANCHOR SHACKLE	FORGED STEEL CL-IV, IS:2004	70 kN	0.700 Kc	KC	4	H. D. C.	ST : AS1	
8	YOKE PLATE	MILD STEEL Fe-410, 1S:0062	120 kN	6.850 KC	K		H. D. C.	ST : YP	
7	OCKET CLEVIS	FORCED STEEL CL-IV, IS:2004	120 kN	1.350 KC	KG	1	H. D. G.	ST : SC	
6	ORONA CONTROL RING	ALUMINIUM ALLOY 63400/6063, 15:733	1.5 KN	7.500 K	KG	2,SETS	--	ST : CCR	
5	ARCING HORN	MILD STEEL Fe-410, 15:062	1.5 KN	2.000 K	KG	1	H. D. G.	ST : AH	
4	HORN HOLDER BALL EYE	FORGED STEEL CL-IV, IS:2004	120 KN	0.700 K	KG		H. D. G.	ST : HHB	
3	EXTENSION LINK	MILD STEEL Fe-410, IS:2062	120 KN	8.200 K	KG	T	H. D. G.	ST : EL	
2	TURN BUCKLE	FORCED STEEL CL-IV, IS:2004	120 KN	4. 00 K	KG		H. D. G.	ST : TB	
1	ANCHOR SHACKLE	FORCED STEEL CL-IV, IS:2004	120 KN	1.200 KC	K	6	H. D. C.	ST : AS	
Sr.No.	DESCRIPTION	MATERIAL	U.T.S.	WEIGHT		QTY.	FINISH	COMPONENT	NO

TECHNICAL DETAILS:

1) ALL DIMENSIONS ARE IN MILLIMETER.
2) SLIPPING STRENGTH OF CLAMP BETWEEN 20 TO 29 kN .
3) BALL \& SOCKET SIZE 20 mm AS PER IS:2486. (PART-\|I).
4) ALL FERROUS PARTS ARE HOT DIP GALVANIZED \& SPRING WASHER ELECTRO GALVANISED AS PER POWERGRID SPECIFICATION.
5) MIN.CORONA EXTINCTION VOLTAGE (DRY) 320 KV (RMS)
6) RIV AT 305 KV RMS (DRY) BELOW 1000 MICROVOLTS
7) HARDWARE TOLERANCES ON LENGTH $\pm 2 \%$.
8) GENERAL TOLERANCE $\pm 3 \%$ UNLESS OTHERWISE SPECIFIED.
9) MIN UTS OF STRING WITHOUT SUSPENSION CLAMP : 120 kN
10) BALANCING WEIGHTS FOR TRANSPOSITION TOWERS ONLY.
11) IOTAL MASS OF ASSEMBLY: 248.16 kg (APPROX).
12) EACH COMPONENT SHALL BE LEGIBLY \& INDELIBLBLY MARKED WITH TRADE MARK OF THE . MANUFACTURER - " EMI" EXCLUDING SMALL SUBCOMPONENTS VIZ. SPRING WASHERS, SECURITY CLIPS ETC.
13) The drawing is indicative and for the tender purpose only.

400 KV SINGLE I SUSPENSIDN PILDT
STRING SUITABLE FIR QUADRUPLE ACSR
MIDSE CINDUCTIR

B Plan and Profile for 18 km Transmission Line

