

## Procurement of Plant Design, Supply, Delivery, Installation, Testing and Commissioning of Lot 1: Lapsiphedi-Ratmate-New Hetauda 400kV D/C Transmission Line Lot 2: Ratmate-New Damauli 400kV D/C Transmission Line Lot 3: New Damauli-New Butwal 400kV D/C Transmission Line (Base) And New Butwal -Nepal/India Border 400kV D/C Transmission Line (Option)

## ADDENDUM #9

## Issued on: 13 April 2023

This Addendum No. 9 modifies respective portions of the Bidding Document issued on 28 November 2022 and amended through Addendum No. 1 on 4 January 2023, Addendum No. 2 on 14 February 2023, Addendum No. 3 on 27 February 2023, Addendum No. 4 on 3 March 2023, Addendum No. 5 on 15 March 2023, Addendum No. 6 on 30 March 2023, Addendum No. 7 on 30 March 2023 and Addendum #8 on 10 April 2023. The changes, as indicated below, are effective on the date of issue of this Addendum.

Except as expressly amended by this Addendum, all other terms and conditions of the Bidding Document - issued on 28 November 2022 and amended through Addendum No. 1 on 4 January 2023, Addendum No. 2 on 14 February 2023, Addendum No. 3 on 27 February 2023, Addendum No. 4 on 3 March 2023, Addendum No. 5 on 15 March 2023, Addendum No. 6 on 30 March 2023, Addendum No. 7 on 30 March 2023 and Addendum #8 on 10 April 2023, remains unchanged and shall remain in full force and effect in accordance with their terms.

| SN | Pages/Paragraph | Amendments                                                                       |
|----|-----------------|----------------------------------------------------------------------------------|
|    | Part 2, B1,     |                                                                                  |
|    | Annex_B1, 8.    |                                                                                  |
|    | Annex           | Add a new Annex "Annex F Appendix 3A - FINALR-3"                                 |
| 1  | F_Supporting    | Geotechnical Investigation Report for the remaining 30km portion of Transmission |
|    | Reports_Final   | Line (in different segments) as Attachment A of this Addendum 8.                 |
|    | Design Report-  |                                                                                  |
|    | 2019-11-08      |                                                                                  |

## ATTACHMENT A

# Annex F Appendix 3A – Final R-3

# Geotechnical Investigation report for the remaining 30km portion of the Transmission Line (in different segments)

| Geotechnical Investigation report for<br>remaining 30km portion of Transmission Line<br>(in different segments) | 01 MCA-N_Soil<br>Report_Changed Porti |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|

Consulting Services for Detailed Survey and updated Line Design for 30 km of changes in 400kV Transmission Line Route Alignment

# **Geotechnical Investigation Report**

Client

Millennium Challenger Account Nepal (MCA-N)

Consultant

Power Grid Corporation of India Ltd. (India)

Jade Consult Pvt. Ltd. (Nepal)

(sub-consultant)

March, 2023









Millennium Challenger Account Nepal

(MCA-N)

# **Geotechnical Investigation Report**

Consulting Services for Detailed Survey and updated Line Design for 30 km of changes in 400kV Transmission Line Route Alignment

March, 2023



Power Grid Corporation of India Ltd. (India)

and

Jade Consult Pvt. Ltd. (Nepal)

(sub-consultant)

| Date                        | Originator                                                         | Checker                                | Approver | Revision |
|-----------------------------|--------------------------------------------------------------------|----------------------------------------|----------|----------|
| 15 <sup>th</sup> Feb 2023   | MR and YA                                                          | GST                                    | PVG      | R0       |
| 24th Feb 2023               | MR and YA                                                          | GST                                    | PVG      | R1       |
| 14th March 2023             | MR and YA                                                          | GST                                    | PVG      | R2       |
| 31 <sup>st</sup> March 2023 | MR and YA                                                          | GST                                    | PVG      | R3       |
|                             | Geotechnical Engineer, Traceable Measurement<br>MSc. Virginia Tech | 15                                     | Per      |          |
|                             | Geote<br>MSc.                                                      | echnical Engineer, Jade Consult<br>NCU |          |          |

|           | LIST OF ABBREVIATIONS                                            |
|-----------|------------------------------------------------------------------|
| AASHTO    | : American Association of State Highway Transportation Officials |
| ASTM      | : American Society for Testing and Materials                     |
| BS        | : British Standard                                               |
| MW        | : Megawatt                                                       |
| DCPT      | : Dynamic Cone Penetration Test                                  |
| GoN       | : Government of Nepal                                            |
| IS        | : Indian Standard                                                |
| MBT       | : Main Boundary Thrust                                           |
| MCT       | : Main Central Thrust                                            |
| OMC       | : Optimum Moisture Content                                       |
| POWERGRID | : Power Grid Corporation of India Limited                        |
| JADE      | : Jade Consult Private Limited                                   |
| RMR       | : Rock Mass Rating                                               |
| SPT       | : Standard Penetration Test                                      |
| MCA-N     | : Millennium Challenger Account Nepal                            |

## **Table of Contents**

| 1  | Ger                         | neral Introduction                                      | 1  |  |  |
|----|-----------------------------|---------------------------------------------------------|----|--|--|
|    | 1.1                         | Background                                              | 1  |  |  |
|    | 1.2                         | Objectives                                              | 1  |  |  |
| 2  | Sco                         | ope of Work                                             | 3  |  |  |
| 3  | Ger                         | neral Geology                                           | 4  |  |  |
|    | 3.1                         | Regional Geological Setting                             | 5  |  |  |
|    | 3.2                         | Geomorphology                                           | 6  |  |  |
|    | 3.3                         | Main Lithology                                          | 6  |  |  |
|    | 3.4                         | Geological Details of Proposed Location                 | 7  |  |  |
| 4  | Fiel                        | Id Investigation                                        | 8  |  |  |
|    | 4.1                         | Field Work Procedures                                   | 8  |  |  |
|    | 4.2                         | Field Tests/ Penetration Tests                          | 10 |  |  |
|    | 4.2.                        | 1 Standard Penetration Test (IS 2131)                   | 10 |  |  |
|    | 4.2.                        | 2 Dynamic Cone Penetration Test (IS 4968 Part I and II) | 11 |  |  |
|    | 4.2.                        | 3 Water Table Measurements                              | 12 |  |  |
| 5  | Lab                         | poratory Testing                                        | 13 |  |  |
|    | 5.1                         | Discussion on Direct Shear Test                         | 13 |  |  |
| 6  | Soi                         | Il Classification                                       | 14 |  |  |
| 7  | Bea                         | aring Capacity                                          | 17 |  |  |
|    | 7.1                         | Shallow Foundation                                      | 17 |  |  |
|    | 7.2                         | Mat Foundation                                          | 20 |  |  |
|    | 7.3                         | Settlement Analysis                                     | 21 |  |  |
| 8  | Reg                         | gional Seismicity and Liquefaction                      | 23 |  |  |
|    | 8.1                         | Seismic Zoning                                          | 23 |  |  |
|    | 8.2                         | Seismic Design Parameter                                | 25 |  |  |
|    | 8.3                         | Evaluation of Liquefaction Triggering: SPT Method       | 25 |  |  |
|    | 8.3.                        | 1 Analysis of Liquefaction Potential                    | 25 |  |  |
|    | 8.3.                        | 2 Mitigation Measures for Liquefaction                  | 26 |  |  |
| 9  | 9 Result and Recommendation |                                                         |    |  |  |
| 10 | 0 References                |                                                         |    |  |  |

## LIST OF FIGURES

| Figure 1-1: Location Map of Proposed TL Route Alignment                                             | 2    |
|-----------------------------------------------------------------------------------------------------|------|
| Figure 3-1: Geological Map of Project Area Showing Geological Formation                             | 4    |
| Figure 3-2: Regional geological Map of Nepal with Transmission line Alignment (Dhital, 2015)        | 5    |
| Figure 3-3: Regional geomorphological map of Nepal (modified after Dahal and Hasegawa, 2008)        | 6    |
| Figure 4-1: GTI Location at Nuwakot Section                                                         | 9    |
| Figure 4-2: Rotary Drilling Method at Nuwakot Section                                               | . 10 |
| Figure 4-3: Typical Setup of Standard Penetration Test (SPT)                                        | . 11 |
| Figure 4-4: Typical DCPT Setup at Site                                                              | . 12 |
| Figure 7-1: Allowable Bearing Capacity Controlled by Shear Failure Considerations Versus Settlement |      |
| Considerations. (FHWA-SA-02-054, Shallow Foundation)                                                | . 18 |
| Figure 7-2: Strain Influence Factor Diagram (From Schmertmann Et Al., 1978)                         | . 22 |
| Figure 8-1: Map showing Seismic Zoning of Nepal along with GTI locations.                           | .23  |
| Figure 8-2: Seismic Hazard Map of Nepal Showing Bedrock Peak Ground Horizontal Acceleration Contour | .24  |

## LIST OF TABLES

| Table 3-1: Lithological Properties of Geological Formation of Proposed Locations                                           | 7     |
|----------------------------------------------------------------------------------------------------------------------------|-------|
| Table 3-2: Geological Information of Proposed Locations                                                                    | 7     |
| Table 4-1: Summary of Location of Boreholes at Respective Locations UTM 45 (Universal Transverse Mercato                   | or) 9 |
| Table 4-2: Groundwater Monitoring During Drilling                                                                          | .12   |
| Table 5-1: The Laboratory Tests and their Referred Codes                                                                   | .13   |
| Table 6-1: Soil Composition at Different Bore Hole Location                                                                | .14   |
| Table 6-2: Brief Summary of Soil Composition                                                                               | .15   |
| Table 7-1: Bearing Capacity Factors                                                                                        | . 19  |
| Table 7-2: Shape and Depth Factors                                                                                         |       |
| Table 7-3: Typical Bearing Capacity Analysis Result of Mat Foundation                                                      | .21   |
| Table 7-4 Correlation Between Dutch Cone Bearing Capacity and SPT N Value [Schmertmann, 1970]                              | . 22  |
| Table 8-1: Seismic Zoning Factors for Selected Cities and Municipalities                                                   | .24   |
| Table 9-1:Bearing Capacity Results of T238N Tower Location Under Changed Portion of New Damauli-Ratama                     |       |
| 400 Kv D/C TL                                                                                                              | .29   |
| Table 9-2: Bearing Capacity Results of T240N Tower Location Under Changed Portion of New Damauli-                          | 24    |
| Ratamate 400 kV D/C TL                                                                                                     | .31   |
| Table 9-3: Bearing Capacity Results of T138N Tower Location Under Changed Portion of Ratamate New<br>Heatuda 400 kV D/C TL | 22    |
| Table 9-4: Bearing Capacity Results of T140N Tower Location Under Changed Portion of Ratamate New                          |       |
| Heatuda 400 kV D/C TL                                                                                                      | .36   |
| Table 9-5: Bearing Capacity Results of T17/1N Tower Location Under Changed Portion of Indo Nepal Border -                  |       |
| New Butwal 400 kV D/C TL                                                                                                   | .38   |
| Table 9-6: Bearing Capacity Results of T198N Tower Location Under Changed Portion of New Butwal - New                      | 40    |
| Damauli 400 kV D/C TL                                                                                                      |       |
| Table 9-7: Summary of Bearing Capacity for Mat Foundation                                                                  | .42   |

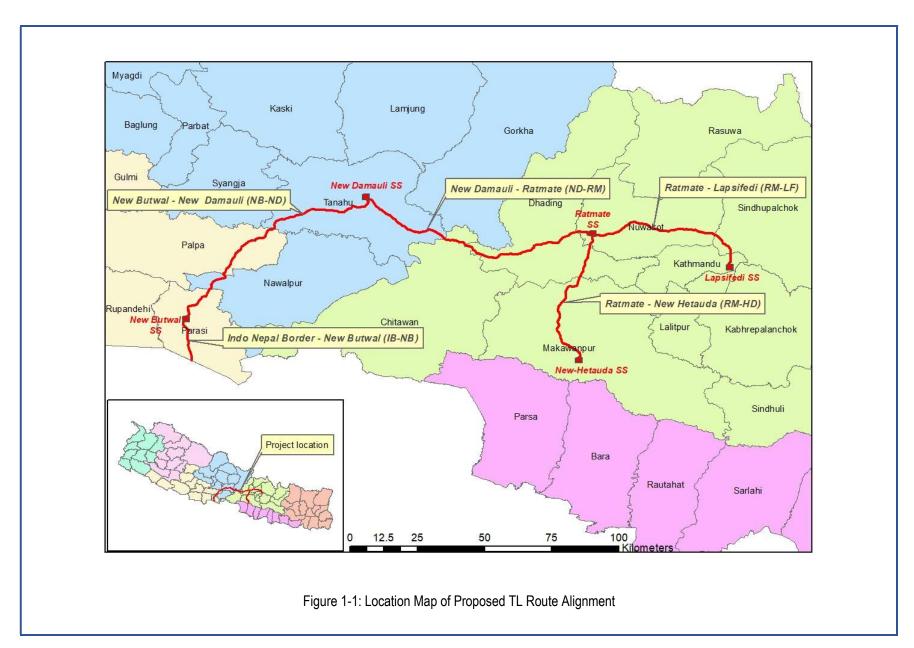
#### Annexures

- A. : Borehole Log and Location Plan
- B : Laboratory Test Summary Sheet
- C : Laboratory Data and Detail Analysis of New Damauli-Ratamate 400 kV D/C TL (T238N)
- D : Laboratory Data and Detail Analysis of New Damauli-Ratamate 400 kV D/C TL (T240N)
- E : Laboratory Data and Detail Analysis of Ratamate-New Hetauda 400 kV D/C TL (T138N)
- F : Laboratory Data and Detail Analysis of Ratamate-New Hetauda 400 kV D/C TL (T140N)
- G : Laboratory Data and Detail Analysis of Indo Nepal Border-New Butwal 400 kV D/C TL (T17/1N)
- H : Laboratory Data and Detail Analysis of New Butwal-New Damauli 400 kV D/C TL (TW198)

## 1 General Introduction

## 1.1 Background

This geotechnical report is prepared for all selected Points TW-198 (Tanahu), T238N (Nuwakot), T240N (Nuwakot), T140N (Makwanpur), T138N (Makwanpur), T17/1N (Parasi). All the field investigation works performed for the preparation of this report has been carried out with generally accepted and practiced method in geotechnical engineering.


After the agreement, the geotechnical exploration was carried out as per Terms of Reference (TOR) on the respective location of Tanahu, Nuwakot, Makwanpur and Parasi districts. The geotechnical exploration for this project includes, rotary drilling with SPT and DCPT up to approved depth and collection of undisturbed soil samples for various laboratory tests and analysis. This geotechnical report presents the finding of the geotechnical exploration, results of the lab test, regional geology of the site, bearing capacity evaluation, and settlement and liquefaction assessment based on SPT. The depth of the borings in all the location point is 12 meters.

This report contains all the findings of the geotechnical exploration, result of the lab test conducted on the thus obtained soil samples, data interpretations of the lab test result and findings of the soil exploration, and recommendations for the foundation design. Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction and weather. The nature of such variations may not become evident until during or after construction. Additionally, this report must be read in its entirety. Individual sections of this report may misguide the reader to draw correct conclusions if considered in isolation from each other. Six locations were proposed for sub-soil investigation program at four districts of Nepal.

## 1.2 Objectives

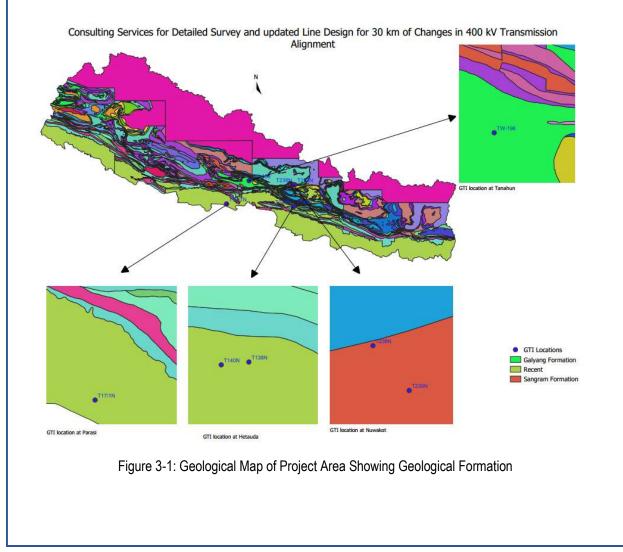
The main objective of this report is to present the subsurface information, which will be used in the detailed design of the Civil and Electrical Structures of critical tower locations. The major objectives of this exploration are listed below:

- To conduct rotary drilling with Standard Penetration Test (SPT) or Dynamic Cone Penetration Test (DCPT) to the depth of 12 m.
- Collect the samples required as per the IS or ASTM code to conduct the soil lab test.
- Assess the suitability of the site for the project and provide geotechnical properties of the soil for foundation design as per the drilling information and results of the soil lab test.
- Recommend bearing capacity and design parameters, which will be required during design of foundation types for Civil and Electrical structures.



## 2 Scope of Work

The main scope of work includes the following:


- To carry out the field and laboratory tests of each bore holes.
- To find out genetic background of the sub-surface layers.
- To collect the engineering and geotechnical properties of the soil.
- Recording the depth of ground water table in all the boreholes if observed up to the depth of exploration during boring work as per specifications.
- To design the foundation types for Civil & Electrical structures.
- To preserve representative disturbed samples for conducting various index tests in the soil lab.
- Conducting the laboratory tests on selected disturbed / undisturbed soil samples collected from various boreholes.
- Preparation and submission of final detailed soil investigation reports.

## 3 General Geology

The great Himalayas extend for about 2400 km from the Punjab Himalaya in the west to the Arunachala Himalaya in the east along the WNW direction. Nepal occupies the north-central position in south Asia and is geographically sandwiched between China (North) and India (South). It is located in the central part of the 2400 km long Himalayan arc and covers one third of its length. Geographically, major part of Nepal (83%) falls within the mountainous region and 17% is covered by alluvial plains of the Gangetic basin.

Physiographically, Nepal can be divided into following eight distinct units (Terai, Siwalik Range, Dun Valley, Mahabharat Range, Midlands, Fore Himalaya, Higher Himalaya and Inner and Trans Himalayan Valleys (Hagen 1969). However due to the impact of continuous collision of continents has resulted in several thrust and fault in Himalaya. Based on these faults and thrust as well as rock type and ages, Nepal Himalaya can be divided into the following five major tectonics zones.

- The Terai Zone
- The Siwalik Zone
- The Lesser Himalayan Zone
- The Higher Himalayan Zone
- The Tibetan Zone



## 3.1 Regional Geological Setting

The project area of Detailed Survey and updated Line Design for 30 km of changes in 400 kV Transmission Line Route Alignment lies in the Indo-Gangetic Plain, Sub-Himalaya (Siwaliks or Churia Group), Lesser Himalaya and Higher Himalaya of Western and Central Nepal (Figure 3-2).

Indo-Gangetic Plain (Terai) is southernmost tectonic division of Nepal. The Terai plain is made up of alluvium of Pleistocene to recent age (1.8 million years to the present) with an average thickness of about 1500 m. This zone lies on the southern part of the Himalayas, composed of the boulders to clay. Dun Valleys (Inner Terai) are 5-30km wide valley, within the Churia hills composed of up by coarse to fine alluvial deposits.

The Sub-Himalaya (Siwaliks or Churia Group) is represented by the low hills of the Churia Range. The Siwalik Group of Nepal is composed of 5-6 km thick fluvial sediments of the middle Miocene to early Pleistocene age. The sediments are generally a layer of mudstone, sandstone, and conglomerate. The Siwalik Group is divided into the Lower, Middle (mudstone and sandstone), Middle Siwaliks (thick-bedded, coarse-grained, "pepper and salt" sandstone) and Upper Siwaliks (conglomerate with lenses of muds and sands).

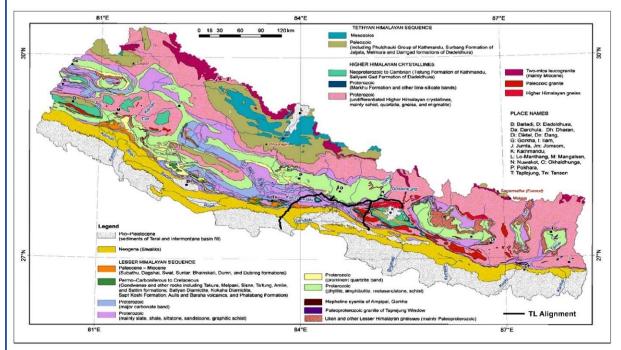



Figure 3-2: Regional geological Map of Nepal with Transmission line Alignment (Dhital, 2015)

Tectonically, the entire Lesser Himalaya consists of allochthonous and para-autochthonous rocks. Rock sequences have developed with nappes, klippes, and tectonic windows, which have complicated the geology. The Lesser Himalaya is made up of mostly the unfossiliferous sedimentary and metasedimentary rocks, consisting of quartzite, phyllite, slate, and limestone ranging in age from Pre-Cambrian to Miocene. Thrusts, the Main Boundary Thrust (MBT), and the Main Central Thrust (MCT), respectively bound the southern and northern limits of Lesser Himalayan zone.

Higher Himalaya is geologically as well as morphologically well-defined unit, and consists of a huge pile of highly metamorphosed rocks. It is situated between the fossiliferous sedimentary zone (the Tibetan-Tethys Himalaya in the north, separated by STDS and the Lesser Himalaya, separated by MCT in the south. This zone has made up of the oldest rocks of Precambrian metamorphic and granitic gneiss. This sequence can be divided into three main

units. From bottom to top, these units are Kyanite-sillimanite gneiss (Formation I), Pyroxene, marble and banded gneiss (Formation II), and Augen gneiss (Formation III).

## 3.2 Geomorphology

The Nepal Himalaya has eight well-defined regional geomorphologic zones in north–south direction: 1) Terai (the northern edge of the Indo-Gangetic plain), 2) Siwalik (Churia) Range, 3) Dun Valleys, 4) Mahabharat Range, 5) Midlands, 6) Fore Himalaya, 7) Higher Himalaya, and 8) Inner and Trans Himalayan Valleys [Hagen, 1969]. Each of these zones has unique altitudinal variation, slope and relief characteristics, and climatic pattern. Studied Alignment of this project will pass through Indo-Gangetic Plain, Siwalik Range, Dun valleys Mahabharat Range and Midlands Zones (Figure 3-3).

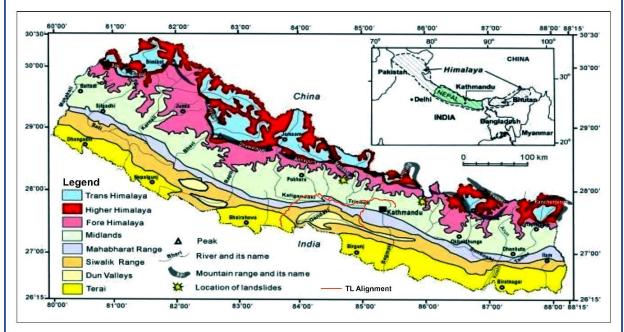



Figure 3-3: Regional geomorphological map of Nepal (modified after Dahal and Hasegawa, 2008)

Major geomorphologic agents of the alignment are controlled by the major faults, River and lithological variations. The Seti Nadi, the Marsyangdi River, the Trisuli River, the Rapti Khola and the Arun Khola and their main tributaries contribute to fluvial landforms in the area. Wide fluvial depositional features are present at Terai plain and Dun valleys and Erosional features are dominant in Sub-Himalayas and Himalayas. Similarly, hard rock and soft rock combination influences the sharp variation of elevation and slope. Major faults such as Himalayan Frontal Thrust (HFT), Central Churia Thrust (CCT), Main Boundary Thrust (MBT), and Main Central Thrust (MCT) and other local faults are responsible for tectonic landforms.

Climatic factors such as the intensity, frequency and duration of precipitation, direction of wind etc. play a major role in development of landscape. 80% of the total annual precipitation of Nepal Himalaya takes place during June to September. Topography and aspect of mountain slope also make local change in rainfall, wind and temperature. The south facing slopes of Nepal Himalaya have a higher rate of insolation and usually have higher evaporation rates [Upreti and Dhital, 1996]. As a result, such slopes always have less vegetation in comparison with north facing slopes.

## 3.3 Main Lithology

Residual soils are developed in situ from the decomposition of rock. They are mostly developed over colluvium deposit and weathered rock mostly in gentle slopes. The deposit consists of red, cohesive clay mixed with sand

and silt and occasional angular gravels of parent rock. The thickness of soil varies from 2-5m. Residual soils are well distributed throughout Dhading and Nuwakot districts.

Colluvial soil refers to soils transported by gravitational forces. The deposit consists of angular to sub-angular gravels and boulders (up to 3 m) with matrix of brown, clayey sandy silt with low plasticity at the ratio of 70% of fine materials and 30% of course materials. The thickness of this deposit varies depending upon inclination of slopes. This type of soil is distributed throughout the alignment. Colluvium deposits are well distributed at the hillslope of Siwalik and Lesser Himalayan region with high slope curvature and low slope angle.

In this survey, possible sites of tower location are avoided in colluvium deposits. Weathered rock product that consists of the completely weathered rock mass with the presence of the parent rock and mineralogical structures is identified at some of tower location during walkover survey. It includes the light grey colored silty soil mixed with some fines and rock fragments of the parent rock.

The alluvial deposits consist mainly of boulder and gravel with sand and silt. The boulders are mostly sub-angular to well rounded, composed mainly of granite, quartzite, gneiss, schist, dolomite and amphibolite.

Main rock types found in the project area consists of sandstone, mudstone and conglomerate of Sub-Himalaya (Siwaliks or Churia Group), quartzite, phyllite, dolomite, limestone, shale, purple and black slate and schist of the Lesser Himalaya and quartzite schist and gneiss and granite of Higher Himalaya. In general, bedding planes (or foliation planes) are north dipping with 3 sets of distinct joint planes and random fractures. Rock mass is generally fresh (W1) to moderately weathered (W3) along the alignment with majority rocks are slightly weathered (W2).

| S.N. | Tower Location | Geological<br>Unit   | Lithological Properties                                                                                                                                                |  |
|------|----------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    | T238N, Nuwakot | Sangram<br>Formation | Composed of a sequence of sandstones, shales and claystone,<br>which were deposited in a terrestrial environment, such as river<br>channels, floodplains and lakebeds. |  |
| 2    | T240N, Nuwakot | Sangram<br>Formation | Composed of a sequence of sandstones, shales and claystone,<br>which were deposited in a terrestrial environment, such as river<br>channels, floodplains and lakebeds. |  |
| 3    | T138N, Hetauda | Recent<br>Deposit    | Quaternary Sediments of Terai Plain. Includes wide variety of materials such as sand, mud, silt and clay.                                                              |  |
| 4    | T140N, Hetauda | Recent<br>Deposit    | Quaternary Sediments of Terai Plain. Includes wide variety of materials such as sand, mud, silt and clay.                                                              |  |
| 5    | T17/1, Parasi  | Recent<br>Deposit    | Quaternary Sediments of Terai Plain. Includes wide variety of materials such as sand, mud, silt and clay.                                                              |  |
| 6    | TW198, Tanahu  | Galyang<br>Formation | Black slates with some carbonates followed upwards by Sangram Formation                                                                                                |  |

Table 3-1: Lithological Properties of Geological Formation of Proposed Locations

#### 3.4 Geological Details of Proposed Location

The geological information of tower locations is tabulated below:

| Table 3-2: Geological Information of Proposed Locations |
|---------------------------------------------------------|
|---------------------------------------------------------|

| S.N. | Location Name  | Geological Hazard                                                                            | Remarks |
|------|----------------|----------------------------------------------------------------------------------------------|---------|
| 1    | T238N, Nuwakot | No Sign of any Slope Instabilities like Landslides, Rock Falls, Mud Flows, Debris Flows etc. |         |

| S.N. | Location Name                                                                                                                                                                                                                                                                                                                                                                               | Geological Hazard                                                                                                                                                                                                                                                                                                                                     | Remarks |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2    | T240N, Nuwakot                                                                                                                                                                                                                                                                                                                                                                              | No Sign of any Slope Instabilities like Landslides, Rock<br>Falls, Mud Flows etc.<br>Since the point is located below road level near river,<br>care should be taken on potential bed scouring by the<br>river, and possible rise of ground water table during<br>monsoon.                                                                            |         |
| 3    | No Sign of any Slope Instabilities like Landslides, Rock<br>Falls, Mud Flows, Debris Flows etc.T138N, HetaudaRiver training works were already done.<br>Allocated points are at higher elevation than the existing<br>highway.<br>Note: If the existing points were shifted near to highway,<br>then risk of flood will increase there by requiring pile<br>foundation during construction. |                                                                                                                                                                                                                                                                                                                                                       |         |
| 4    | T140N, Hetauda                                                                                                                                                                                                                                                                                                                                                                              | No Sign of any Slope Instabilities like Landslides, Rock<br>Falls, Mud Flows, Debris Flows etc.<br>River training works were already done.<br>Allocated points are at higher elevation than the existing<br>highway.                                                                                                                                  |         |
| 5    | T17/1, Parasi                                                                                                                                                                                                                                                                                                                                                                               | No Sign of any Slope Instabilities like Landslides, Rock<br>Falls, Mud Flows, Debris Flows etc.<br>This point lies in alluvial deposits of terai region.<br>GWT was encountered.<br>Since the point is located near river, care should be<br>taken on potential bed scouring by the river, and possible<br>rise of ground water table during monsoon. |         |
| 6    | No Sign of any Slope Instabilities like Landslides. Rock                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |         |

## 4 Field Investigation

Site investigations enable vertical stratigraphy in correspondence of angle towers foundation to be drawn and soil samples to be tested, with the purpose of evaluation of foundation material strength parameters, bearing capacity, permeability, water table presence, soil type classification and other geotechnical/geological information. Such information, together with the normal topographical survey, provides the designer with complete details of the site for design and enables him to prepare economical designs for the tower foundations. Because of the complexity of natural deposits/rock, a unique method of exploration can't be suitable for all the geological conditions. The choice of the most suitable methodology varies according the nature of the geological material and the purpose of the exploratory program. According to this principle, different site investigation methodologies have been foreseen to properly investigate various foundation materials like rock, fine or coarse deposits.

## 4.1 Field Work Procedures

Field works involved Rotary Drilling Method for drilling and sampling of the boreholes in the marked locations which were finalized during technical discussion between MCA-N and Consultant.

The drilling was advanced up to the depth of 12.0 m from the ground levels and SPT/DCPT observations were taken at every 1.5 m intervals and are recorded for all 6 number of stations. Borehole logs were prepared at the site on the basis of the visual observation of the soil obtained from the boreholes. The dia. of the borehole is 100m and both SPT and DCPT were conducted on the same borehole. As usual practice here in Nepal, DCPT were

conducted when gravel mixed strata was encountered. The Split Spoon Sampler and DCPT Cone are attached on the same rod as per the requirement when conducting the test. The borehole logs of tower locations are attached in the Annex – A, soil description on the borehole were later verified by laboratory test results.



Figure 4-1: GTI Location at Nuwakot Section

## • Rotary Drilling Method

Among the common methods of subsurface drilling in Nepal, Rotary drilling method is the suitable method for drilling in all types of soil. Rotary drilling is used to form a deep observation borehole or for obtaining representative samples.

Rotary Drilling Method is used by rotating the core bit fixed at the lower end of the drill rod i.e. barrel with drilling fluid; water or bentonite slurry. This method is adopted in the project area because of the presence of cohesion less soil layers having sandy gravels with pebbles, cobbles and boulders. Each borehole was drilled up to a depth of twelve meters. The soil extracted during drilling of each hole was observed carefully by the supervisor to make site borehole logs. The locations details of the borehole is given in Table *4-1*.

| S. N | Description | Easting, m | Northing, m |
|------|-------------|------------|-------------|
| 1    | T238N       | 306079     | 3082750     |
| 2    | T240N       | 306228     | 3082309     |
| 3    | T138N       | 304271     | 3035190     |
| 4    | T140N       | 303560     | 3035120     |
| 5    | T17/1       | 766267     | 3042105     |
| 6    | TW198       | 218356     | 3092898     |

Table 4-1: Summary of Location of Boreholes at Respective Locations UTM 45 (Universal Transverse Mercator)



Figure 4-2: Rotary Drilling Method at Nuwakot Section

## 4.2 Field Tests/ Penetration Tests

#### 4.2.1 Standard Penetration Test (IS 2131)

The standard Penetration Test (SPT) involves driving a standard split-spoon sampling tube (50 mm O.D. and 35 mm I.D.) 450 mm into the ground at the bottom of a borehole with 63.5 kg hammer falling freely from 750 mm. The borehole is advanced to the desired testing depth, the drilling tools are removed, the sampler is attached to a series of drill rods, and the entire assembly is lowered to the bottom of borehole. The hammer is positioned over the top of the drill rods and blows are applied.

There are commonly three types of hammers used in SPT test, donut hammer, safety hammer and automatic trip hammer. For this project donut hammer was used. The donut hammer provides approximately 45% of the maximum free-fall energy to the drill system. The most common method of raising and lowering the donut or safety hammer is the rope and cathead method. A rope wrapped around a rotating pulley (a cathead) is used to lift the hammer. The drill rods are marked in 150 mm increments. As the sampler is driven, the number of hammer blows required to drive the sampler each 150 mm increment is recorded. The blow counts for the last two 150 mm increments added together are the standard penetration resistance or N-value. Upon completion of driving, the sampler is withdrawn from the borehole. The split-spoon sampler is opened and the soil sample is removed and logged.

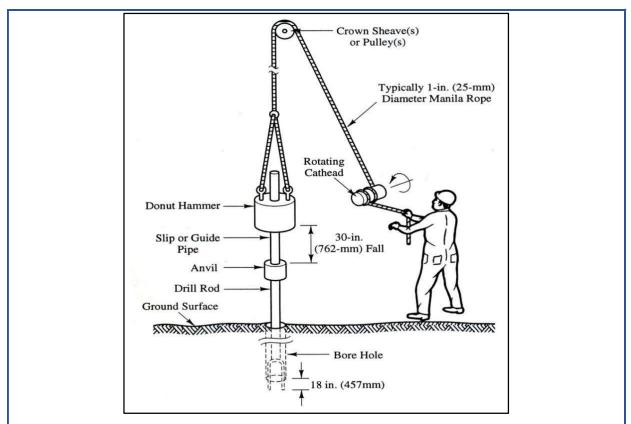



Figure 4-3: Typical Setup of Standard Penetration Test (SPT)

## 4.2.2 Dynamic Cone Penetration Test (IS 4968 Part I and II)

The performance of SPT in gravelly, boulder and rocky strata is found to be very poor. Therefore, another testing method called Dynamic Cone Penetration Test (DCPT) as recommended by IS-4968:1976, is used for testing in such strata. This standard covers the procedure for determining the resistance of different soil strata to dynamic penetration of a 50 mm cone. All the testing procedures are alike SPT. The DCPT value obtained is converted in SPT using the correlation given by Central Building Research Institute, Roorkee, which is adopted by IS-4968-1976.

 $N_{DCP}$ = 1.5  $N_{SPT}$  for depths up to 4 m  $N_{DCP}$  = 1.75  $N_{SPT}$  for depths between 4 to 9 m  $N_{DCP}$  = 2  $N_{SPT}$  for depths greater than 9 m Were,  $N_{DCP}$ = Recorded DCPT values

N<sub>SPT</sub>=SPT values

The tests are conducted at every 1.50 m interval, as far as possible, starting first at 1.50 m depth. Depending upon the soil strata encountered during subsurface drilling process, the field-tests, SPT or DCPT is adopted.



Figure 4-4: Typical DCPT Setup at Site

## 4.2.3 Water Table Measurements

When the drilling of the boreholes was carried out proper attention were given to notice and record any encountered ground water table. If any groundwater table was encountered after 24 hours of completion of rotary drilling, it was measured using the wetted tape.

It is anticipated that the piezometric conditions at boring will fluctuate depending on variations in weather, precipitation, surface runoff, evaporation, and other seasonal factors. Other than collection of ground water data during drilling and observations in the borings, no other measurements were obtained specific to characterization of actual groundwater conditions. Water table encountered at any borehole locations during field investigations are presented below in Table 4-2. Please refer Annex - A Borehole Logs.

| Tower Location | Depth of Water Encountered During Drilling |
|----------------|--------------------------------------------|
| T238N          | Not Encountered                            |
| T240N          | 4.5 m                                      |
| T138N          | 7.3 m                                      |
| T140N          | Not Encountered                            |
| T17/1N         | 6 m                                        |
| TW-198         | Not Encountered                            |

Table 4-2: Groundwater Monitoring During Drilling

## 5 Laboratory Testing

Representative soil samples were selected for laboratory testing. The results of the index testing aided in the classification of materials encountered during the subsurface investigation and provided data for use engineering analysis and evaluations. Index test results, including moisture contents, fines contents, and Atterberg limits, are presented on the laboratory summary and is included in Annex

All tests were conducted confirming to the specification as per IS Codes. The following test were performed.

| S.N. | Test                      | IS Code                  |  |
|------|---------------------------|--------------------------|--|
| 1    | Bulk and dry density      | By Calculation           |  |
| 2    | Moisture Content          | IS 2720 (Part 2) – 1992  |  |
| 3    | Grain size                | IS 2720 (Part 4) – 1992  |  |
| 4    | Atterberg Limit           | IS 2720 (Part 5) – 1992  |  |
| 5    | Specific Gravity          | IS 2720 (Part 3) – 1992  |  |
| 6    | Drained Direct Shear Test | IS 2720 (Part 13) – 1986 |  |

| Table 5-1. The Laboratory | Tests and their Referred Codes |
|---------------------------|--------------------------------|
| Table 0-1. The Laboratory |                                |

#### Grain Size Analysis

The grain size analysis of soil has been performed as per IS 2720 (Part 4) – 1992 and hydrometer analysis on finer particles as per 2720 (Part 4) – 1985 as per standard practice.

#### Direct Shear Test

Direct shear test is the laboratory method of determining the shear strength parameter of soil. It consists of a mould to cut the soil sample to a size used in the shear box, shear box to apply loads on the soil, loading arrangements for both normal and shear force and graduated rings to measure the shear force and displacements. The shear test has been performed on remolded sample considering appropriate density and moisture as per site condition and nature of soil.

At first, the sample was prepared in a mold and then put in the shear box. Initial readings in the graduated rings were made zero. The vertical load was applied (50 kPa, 100 kPa and 200 kPa) and horizontal displacements and corresponding horizontal forces were noted in regular intervals for each load until the soil failed. These measurements were used to plot the stress strain curve of the sample during the loading for the given normal stress. Results of different tests were presented with normal stress as x- axis and shear stress as y- axis. A linear curve fitting was used. The slope of the line is the internal angle of friction of the soil and the y-ordinate of the line at zero abscissa gives the cohesion of the soil. All the shear test has been performed as per IS 2720 (Part 13) – 1986 and other IS standard practice.

## 5.1 Discussion on Direct Shear Test

#### Introduction:

The direct shear test is a common laboratory test used to determine the shear strength of soil and rock materials. In this test, a sample is placed in a shear box and subjected to a shearing force along a predetermined plane. The shear force is increased until the sample fails, and the shear strength is calculated based on the maximum force applied.

#### Test Results:

In this project, a direct shear test was conducted on a sample collected from different site. The test results are summarized below in **Chapter 6**.

#### Discussion:

Based on the direct shear test results, the shear strength parameters of the investigated samples were determined to be 0 to 33 kPa Cohesion and 14° to 34° friction angle. The displacement data also showed a typical shear behavior, with an initial elastic deformation followed by a plastic deformation phase leading to failure.

Cohesion value varies based on grain size distribution (Clay, Sand, Silt and Gravel on percentage), mineralogy and moisture content. Generally, Clay Soil have higher Cohesion value and Cohesion of Sandy soil or Gravelly soil is generally negligible.

Friction angle value varies based on grain size distribution (Clay, Sand, Silt and Gravel on percentage), mineralogy and moisture content. Generally, Clay Soil have lower friction angle than that of sandy and gravelly soil.

## 6 Soil Classification

Soil can be classified as gravel, sand, silt and clay according to their grain size. The proportions of these constitutions in the soil may vary and so as their characteristics. The constituents of the soil have a significant influence on its behavior. IS 2720(Part 4)-1985 has been followed for sieve analysis. Soil gradation is very important to geotechnical engineering. It is an indicator of other engineering properties such as compressibility, shear strength, and hydraulic conductivity. In a design, the gradation of the in situ or on-site soil often controls the design and ground water drainage of the site.

Most of the soil encountered in all the tower locations is coarse grained soil. In all tower locations no fill strata were encountered, i.e., all proposed tower location in on natural ground. As per the SPT and DCPT N value soil can be described as dense to very dense soil.

The Table 6-1 shows the soil composition at different bole hole locations:

| Location | Soil Composition of Different Bore Hole Location                                                                                                                                                        |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T238N    | Poorly Graded Sand with silt and fine to coarse grained sand up to depth of 1m; Gravel and Cobble                                                                                                       |
| TIOON    | mixed soil with sand up to depth of 12 m                                                                                                                                                                |
| T138N    | Gravel and Boulder with sand                                                                                                                                                                            |
| T140N    | Gravel and boulder with sand                                                                                                                                                                            |
| T17/1    | Clayey sand up to depth of 1.5m; Poorly graded sand with clay and fine to coarse grained sand up                                                                                                        |
|          | to a depth of 4.5 m; Poorly graded sand with silt up to depth of 6m; Poorly graded sand up to depth of 7 m; Clayey sand with gravel up to depth of 9m; Poorly graded sand with clay up to depth of 12m. |
| TW198    | Well graded gravel with sand up to depth of 4m; Well graded gravel with silt and sand up to depth of 6m; Well graded gravel with sand up to depth of 9m; Well gravel with silt and sand up to 10.5m;    |
|          | Well graded gravel with silt and sand up to depth of 12m                                                                                                                                                |

Table 6-1: Soil Composition at Different Bore Hole Location

|         |            | Depth                                                   | Soil Type                                                               | SPT   | DCPT       | Compactness/Consistency | Sp.     | Direct Sh | near |
|---------|------------|---------------------------------------------------------|-------------------------------------------------------------------------|-------|------------|-------------------------|---------|-----------|------|
|         | Tower Name | (m)                                                     |                                                                         | Value | Value      | Compactness/Consistency | Gravity | C (kPa)   | Φ    |
|         |            | 1.5 Well Graded Sand with Gravel; moist, brown, fine to |                                                                         |       |            | Very Soft               | 2.501   | 0         | 34   |
|         |            | 3                                                       | coarse grained sand                                                     | 20    | -          | Very Stiff              | 2.501   | 0         | 34   |
|         |            | 4.5                                                     |                                                                         | -     | 50/15      | Very Dense              | -       | -         | -    |
| 1       | T238N      | 6                                                       |                                                                         | -     | 50/3       | Very Dense              | -       | -         | -    |
| I       | 12301      | 7.5                                                     | Gravel and Cobble mixed Soil with Sand                                  | -     | 50/9       | Very Dense              | -       | -         | -    |
|         |            | 9                                                       |                                                                         | -     | 50/10      | Very Dense              | -       | -         | -    |
|         |            | 10.5                                                    |                                                                         | -     | 125/30     | Very Dense              | -       | -         | -    |
|         |            | 12                                                      |                                                                         | -     | 50/20      | Very Dense              | -       | -         | -    |
|         |            | 1.5                                                     |                                                                         | -     | 22         | Very Dense              | -       | -         | -    |
| 2 T138N | 3          |                                                         | -                                                                       | 50/9  | Very Dense | -                       | -       | -         |      |
|         | 4.5        |                                                         | -                                                                       | 50/12 | Very Dense | -                       | -       | -         |      |
|         | 6          | Gravel and Boulder with Sand                            | -                                                                       | 50/6  | Very Dense | -                       | -       | -         |      |
|         | 7.5        |                                                         | -                                                                       | 50/12 | Very Dense | -                       | -       | -         |      |
|         |            | 9                                                       |                                                                         | -     | 50/13      | Very Dense              | -       | -         | -    |
|         |            | 10.5                                                    |                                                                         | -     | 50/7       | Very Dense              | -       | -         | -    |
|         |            | 12                                                      |                                                                         | -     | 50/9       | Very Dense              | -       | -         | -    |
|         |            | 1.5                                                     |                                                                         | -     | 50/12      | Very Dense              | -       | -         | -    |
|         |            | 3                                                       |                                                                         | -     | 50/15      | Very Dense              | -       | -         | -    |
|         |            | 4.5                                                     |                                                                         | -     | 50/10      | Very Dense              | -       | -         | -    |
| 3       | T140N      | 6                                                       | Gravel and Boulder with Sand                                            | -     | 50/9       | Very Dense              | -       | -         | -    |
| ა       | 1 140N     | 7.5                                                     |                                                                         | -     | 50/13      | Very Dense              | -       | -         | -    |
|         |            | 9                                                       |                                                                         | -     | 50/11      | Very Dense              | -       | -         | -    |
|         |            | 10.5                                                    |                                                                         | -     | 50/14      | Very Dense              | -       | -         | -    |
|         |            | 12                                                      |                                                                         | -     | 50/8       | Very Dense              | -       | -         | -    |
|         |            | 1.5                                                     | Wall Oradad Oracal with Canal maint house for th                        | 33    | -          | Hard                    | 2.629   | -         | -    |
| 4       | TW198      | 3                                                       | Well Graded Gravel with Sand; moist, brown, fine to coarse grained sand | 43    | -          | Hard                    | 2.655   | -         | -    |
|         |            | 4.5                                                     | Coalse yrailleu sailu                                                   | 50    | -          | Hard                    | 2.655   | -         | -    |

| SN Tower Name |        | Depth                                                                 | Depth Soil Type                                                                                   |       | DCPT       | Compactness/Consistency | Sp.     | Direct SI | hea |
|---------------|--------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|------------|-------------------------|---------|-----------|-----|
| SIN           |        | (m) Soli Type                                                         |                                                                                                   | Value | Value      | Compactness/Consistency | Gravity | C (kPa)   | φ   |
|               |        | 6 Well Graded Gravel with Silt and Sand: moist.                       |                                                                                                   | _     | 50/10      | Very Dense              | 2.617   | -         | _   |
|               |        | 7.5                                                                   | brown, fine to coarse grained sand                                                                | -     | 50/5       | Very Dense              | -       | -         | -   |
|               |        | 9                                                                     | <b>č</b>                                                                                          | -     | 50/8       | Very Dense              | -       | 0         | 3   |
|               |        | 10.5                                                                  | Well Graded Gravel with Silt and Sand; moist,                                                     | -     | 50/9       | Very Dense              | -       |           |     |
|               |        | 12                                                                    | brown, fine to coarse grained sand                                                                | -     | 50/7       | Very Dense              | 2.632   | 0         |     |
|               |        | 1.5                                                                   | Poorly Graded Sand with Silt; moist, dark brown, fine to coarse grained sand                      | 21    |            | Very Stiff              | 2.686   | 6         |     |
|               |        | 3                                                                     |                                                                                                   | -     | 50/10      | Very Dense              | -       | -         |     |
|               |        | 4.5                                                                   |                                                                                                   | -     | 50/9       | Very Dense              | -       | -         |     |
| 5             | T240N  | 6                                                                     |                                                                                                   | -     | 50/8       | Very Dense              | -       | -         |     |
|               | 7.5    | Gravel and Cobble mixed Soil with Sand                                | -                                                                                                 | 50/6  | Very Dense | -                       | -       |           |     |
|               |        | 9                                                                     |                                                                                                   | -     | 50/9       | Very Dense              | -       | -         |     |
|               |        | 10.5                                                                  |                                                                                                   | -     | 50/7       | Very Dense              | -       | -         |     |
|               |        | 12                                                                    |                                                                                                   | -     | 50/5       | Very Dense              | -       | -         |     |
|               |        | 1.5                                                                   | Clayey Sand; wet, grey, fine to coarse grained sand                                               | 21    | -          | Very Stiff              | 2.516   | 10        | _   |
|               |        | 3                                                                     | Poorly Graded Sand with Fat Clay; wet, grey, fine to                                              | 25    | -          | Very Stiff              | 2.47    | 31        |     |
|               |        | 4.5                                                                   | coarse grained sand                                                                               | 28    | -          | Very Stiff              | 2.615   | 31        |     |
| 5             | T17/1N | 6                                                                     | Poorly Graded Sand with Elastic Silt; moist, brown,<br>contains root, fine to coarse grained sand | 23    | -          | Very Stiff              | 2.642   | 33        |     |
| Ū             |        | 7.5                                                                   | Poorly Graded Sand; moist, brown, fine to coarse grained sand                                     | 63    | -          | Hard                    | 2.678   | 0         |     |
|               | 9      | Clayey Sand with Gravel; moist, brown, fine to<br>coarse grained sand | 58                                                                                                |       | Hard       | 2.658                   | 23      | _         |     |
|               |        | 10.5                                                                  | Poorly Graded Sand with Clay; moist, brown, fine to                                               | 73    | -          | Hard                    | 2.658   | 9         |     |
|               |        | 12                                                                    | coarse grained sand                                                                               | 50    | -          | Hard                    | 2.658   | 9         |     |

## 7 Bearing Capacity

A basic requirement for any foundation is that it can safely support the load that it carries, the foundation itself must not suffer structural failure, and the soil beneath it must not be loaded so heavily that its supporting capacity is exceeded. Structural failure in a foundation can be avoided by assuring that the foundation has sufficient shear and moment capacity to distribute the load it carries into the soil on which it rests. Failure of the soil beneath a foundation can be avoided by making the foundation large enough so that the stresses induced in the supporting soils are less than their shear strengths. The allowable bearing capacity for different footing size are provided for respective tower location. The total permissible settlement for the shallow and raft foundation is considered as 40 mm and 65 mm respectively. The values of net bearing pressure were computed using the SPT and DCPT value.

## 7.1 Shallow Foundation

Allowable bearing capacity of soil have been calculated based on the modified SPT/DCPT test result and Direct Shear Test of the disturbed sample retrieved from borehole of each site of Transmission tower location.

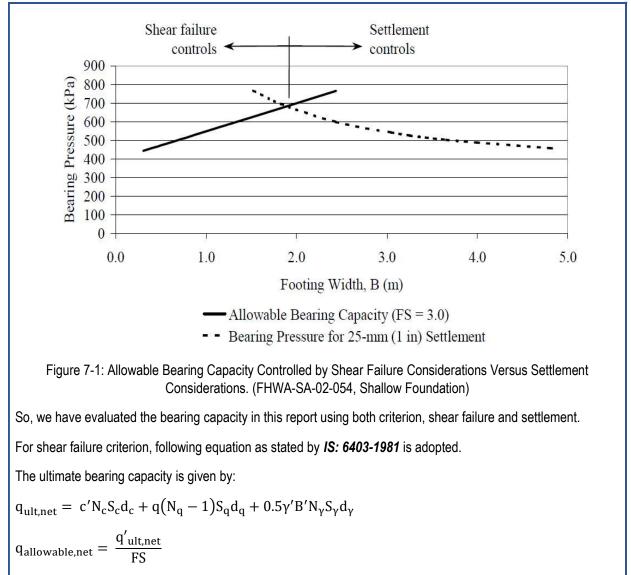
In conversion of DCPT to SPT IS: 4968-2 (1976), (Reaffirmed 2007) and Method described by The Central Building Research Institute, Roorkee have been adopted. They are described as given below;

 $N_{cbr}$  = 1.5 N for depth up to 3.0 m

 $N_{cbr}$  = 1.75 N for depth between 3.0 m to 6.0 m

 $N_{cbr}$  = 2.0 N for depth greater than 6.0 m

Were,


N<sub>cbr</sub> is dynamic cone resistance.

The design of shallow foundation involves calculating an allowable pressure that will maintain an adequate factor of safety relative to shear failure of the bearing soil and limit the settlement of the foundation to meet serviceability requirements. The allowable bearing capacity of a shallow foundation is defined as the lesser of:

- The pressure that will result in a shear failure divided by a suitable factor of safety (FS), or
- The pressure that results in a specified limiting amount of settlement.

The allowable bearing capacity of a spread footing historically has combined the design considerations of minimizing the potential for shear failure of the soil and limiting vertical deflection (settlement). Both of these design considerations are a function of the least footing dimension, typically called the "footing width". In general, for a footing bearing on essentially an isotropic, homogenous material, with no embedment, the factor of safety against shear failure developing beneath the footing will increase as the footing width increases. However, as a footing dimension, the stress increase felt by soil extends more deeply below the bearing elevation.

The effect of footing width on bearing and settlement is shown conceptually in Figure 7-1. Note that the allowable bearing capacity of a footing is controlled by shear failure considerations for narrow footing widths. However, as the footing width increases, the allowable bearing capacity is limited by the settlement potential of the soils supporting the footing.



Where,

 $N_c,\,N_q,\,N_\gamma$  are same as Vesic's Bearing capacity theory  $S_c,\,S_q,\,S_\gamma$  are shape factors  $d_c,\,d_q,\,d_\gamma$  are depth factors

For settlement criterion, following method is adopted as stated by *IS: 6403-1971*. The IS code method is similar to Teng's, the equation is used to evaluate the net allowable bearing pressure for settlement of 40 mm.

$$q_{allow,net} = 55.4 (N-3) \left(\frac{B+0.3}{2B}\right)^2 R_{w2} \qquad kPa$$

Where,

N = Standard Penetration Value

B = Width (m)

 $R_{w2}$  = Reduction factor for water table

As in most of the cases in substation the minimum foundation width will be approximately 2 m or greater. So, we recommend the designer to use the bearing capacity evaluated using the settlement criterion.

| Bearing Capacity Factors |       |            |       |       |          |       |       |        |      |  |
|--------------------------|-------|------------|-------|-------|----------|-------|-------|--------|------|--|
| Φ (Deg)                  | (I    | S 6403: 19 | 81)   |       | Meyerhof |       |       | Hansen |      |  |
|                          | Nc    | Nq         | Nγ    | Nc    | Nq       | Nγ    | Nc    | Nq     | Nγ   |  |
| 0                        | 5.14  | 1          | 0     | 5.14  | 1        | 0     | 5.14  | 1      | 0    |  |
| 1                        | 5.38  | 1.09       | 0.07  | 5.38  | 1.09     | 0.02  | 5.38  | 1.09   | 0.02 |  |
| 2                        | 5.63  | 1.2        | 0.15  | 5.63  | 1.2      | 0.04  | 5.63  | 1.2    | 0.04 |  |
| 3                        | 5.9   | 1.31       | 0.24  | 5.9   | 1.31     | 0.06  | 5.9   | 1.31   | 0.06 |  |
| 4                        | 6.19  | 1.43       | 0.34  | 6.19  | 1.43     | 0.08  | 6.19  | 1.43   | 0.08 |  |
| 5                        | 6.49  | 1.57       | 0.45  | 6.49  | 1.57     | 0.1   | 6.49  | 1.57   | 0.1  |  |
| 6                        | 6.81  | 1.72       | 0.57  | 6.81  | 1.72     | 0.16  | 6.81  | 1.72   | 0.16 |  |
| 7                        | 7.16  | 1.88       | 0.71  | 7.16  | 1.88     | 0.22  | 7.16  | 1.88   | 0.22 |  |
| 8                        | 7.53  | 2.06       | 0.86  | 7.53  | 2.06     | 0.28  | 7.53  | 2.06   | 0.28 |  |
| 9                        | 7.92  | 2.25       | 1.03  | 7.92  | 2.25     | 0.34  | 7.92  | 2.25   | 0.34 |  |
| 10                       | 8.35  | 2.47       | 1.22  | 8.35  | 2.47     | 0.4   | 8.35  | 2.47   | 0.4  |  |
| 11                       | 8.8   | 2.71       | 1.44  | 8.8   | 2.71     | 0.54  | 8.8   | 2.71   | 0.56 |  |
| 12                       | 9.28  | 2.97       | 1.69  | 9.28  | 2.97     | 0.68  | 9.28  | 2.97   | 0.72 |  |
| 13                       | 9.81  | 3.26       | 1.97  | 9.81  | 3.26     | 0.82  | 9.81  | 3.26   | 0.88 |  |
| 14                       | 10.37 | 3.59       | 2.29  | 10.37 | 3.59     | 0.96  | 10.37 | 3.59   | 1.04 |  |
| 15                       | 10.98 | 3.94       | 2.65  | 10.98 | 3.94     | 1.1   | 10.98 | 3.94   | 1.2  |  |
| 16                       | 11.63 | 4.34       | 3.06  | 11.63 | 4.34     | 1.46  | 11.63 | 4.34   | 1.54 |  |
| 17                       | 12.34 | 4.77       | 3.53  | 12.34 | 4.77     | 1.82  | 12.34 | 4.77   | 1.88 |  |
| 18                       | 13.1  | 5.26       | 4.07  | 13.1  | 5.26     | 2.18  | 13.1  | 5.26   | 2.22 |  |
| 19                       | 13.93 | 5.8        | 4.68  | 13.93 | 5.8      | 2.54  | 13.93 | 5.8    | 2.56 |  |
| 20                       | 14.83 | 6.4        | 5.39  | 14.83 | 6.4      | 2.9   | 14.83 | 6.4    | 2.9  |  |
| 21                       | 15.82 | 7.07       | 6.2   | 15.82 | 7.07     | 3.68  | 15.82 | 7.07   | 3.68 |  |
| 22                       | 16.88 | 7.82       | 7.13  | 16.88 | 7.82     | 4.46  | 16.88 | 7.82   | 4.46 |  |
| 23                       | 18.05 | 8.66       | 8.2   | 18.05 | 8.66     | 5.24  | 18.05 | 8.66   | 5.24 |  |
| 24                       | 19.32 | 9.6        | 9.44  | 19.32 | 9.6      | 6.02  | 19.32 | 9.6    | 6.02 |  |
| 25                       | 20.72 | 10.66      | 10.88 | 20.72 | 10.66    | 6.8   | 20.72 | 10.66  | 6.8  |  |
| 26                       | 22.25 | 11.85      | 12.54 | 22.25 | 11.85    | 8     | 22.25 | 11.85  | 7.9  |  |
| 27                       | 23.94 | 13.2       | 14.47 | 23.94 | 13.2     | 9.6   | 23.94 | 13.2   | 9.4  |  |
| 28                       | 25.8  | 14.72      | 16.72 | 25.8  | 14.72    | 11.2  | 25.8  | 14.72  | 10.9 |  |
| 29                       | 27.86 | 16.44      | 19.34 | 27.86 | 16.44    | 13.45 | 27.86 | 16.44  | 13   |  |
| 30                       | 30.14 | 18.4       | 22.4  | 30.14 | 18.4     | 15.7  | 30.14 | 18.4   | 15.1 |  |

Table 7-1: Bearing Capacity Factors

| Bearing Capacity Factors |                    |                                                                                                            |                |                                                                                                                                     |          |                 |                                                  |                         |       |  |
|--------------------------|--------------------|------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|--------------------------------------------------|-------------------------|-------|--|
| Φ (Deg)                  | (1                 | S 6403: 19                                                                                                 | 81)            |                                                                                                                                     | Meyerhof |                 | Hansen                                           |                         |       |  |
| Nc Nq                    |                    |                                                                                                            | Nγ             | Nc                                                                                                                                  | Nq       | Nγ              | Nc                                               | Nq                      | Nγ    |  |
| 31                       | 32.67              | 20.63                                                                                                      | 25.9           | 32.67                                                                                                                               | 20.63    | 18.85           | 5 32.67                                          | 20.63                   | 17.95 |  |
| 32                       | 35.49              | 23.18                                                                                                      | 30.22          | 35.49                                                                                                                               | 23.18    | 22              | 35.49                                            | 23.18                   | 20.8  |  |
| 33                       | 38.64              | 26.09                                                                                                      | 35.19          | 38.64                                                                                                                               | 26.09    | 26.55           | 5 38.64                                          | 26.09                   | 24.75 |  |
| 34                       | 42.16              | 29.44                                                                                                      | 41.06          | 42.16                                                                                                                               | 29.44    | 31.1            | 42.16                                            | 29.44                   | 28.7  |  |
| 35                       | 46.12              | 33.3                                                                                                       | 48.03          | 46.12                                                                                                                               | 33.3     | 37.75           | 6 46.12                                          | 33.3                    | 34.35 |  |
| 36                       | 50.59              | 37.75                                                                                                      | 56.31          | 50.59                                                                                                                               | 37.75    | 44.4            | 50.59                                            | 37.75                   | 40    |  |
| 37                       | 55.63              | 42.92                                                                                                      | 66.19          | 55.63                                                                                                                               | 42.92    | 54.2            | 55.63                                            | 42.92                   | 48.05 |  |
| 38                       | 61.35              | 48.93                                                                                                      | 78.03          | 61.35                                                                                                                               | 48.93    | 64              | 61.35                                            | 48.93                   | 56.1  |  |
| 39                       | 67.87              | 55.96                                                                                                      | 92.25          | 67.87                                                                                                                               | 55.96    | 78.8            | 67.87                                            | 55.96                   | 67.75 |  |
| 40                       | 75.31              | 64.2                                                                                                       | 109.41         | 75.31                                                                                                                               | 64.2     | 93.6            | 75.31                                            | 64.2                    | 79.4  |  |
| Factor                   | Me                 | yerhof                                                                                                     | Table 7-       | 2: Shape an<br>Ha                                                                                                                   | nsen     | ictors          | IS Coo                                           | le Metho                | d     |  |
| Sc                       | -                  | D                                                                                                          |                | $\frac{1 + \frac{N_q B}{N_c L}}{1 + \frac{B}{L} \sin \phi}$                                                                         |          |                 | $1 + 0.2 \frac{B}{L}$                            |                         |       |  |
| Sq                       | 1+0                | $\frac{0.2N_{\phi}\frac{B}{L}}{0.1N_{\phi}\frac{B}{L}}$ $\frac{0.1N_{\phi}\frac{B}{L}}{\phi > 10^{\circ}}$ |                | $1 + \frac{B}{L} \sin \phi$                                                                                                         |          |                 | $1 + 0.2 \frac{B}{L}$                            |                         |       |  |
| sγ                       | s <sub>q</sub> for | $\phi > 10^{\circ}$                                                                                        |                | $1 - 0.4 \frac{B}{L}$                                                                                                               |          |                 | $1 - 0.4 \frac{B}{L}$                            |                         |       |  |
| d <sub>c</sub>           | 1+0.2              | $2\sqrt{N_{\phi}}\frac{D_f}{B}$                                                                            | -              | $\frac{1 - 0.4 \frac{B}{L}}{1 + 0.4 \frac{D_f}{B}}$ $1 + 2tan\phi(1 - sin\phi)^2 \frac{D_f}{B}$ $1 \text{ for all values of } \phi$ |          |                 | $1 + 0.2 \sqrt{N_{\phi}} \frac{D_f}{B}$          |                         |       |  |
| $d_q$                    | $1 + 0.1 \sqrt{1}$ | $\overline{N_{\phi}} \frac{D_f}{B} fo$                                                                     | $r\phi$ 1-     | + 2tan¢(                                                                                                                            | 1 – sinø | $\frac{D_f}{B}$ | $1 + 0.1 \sqrt{N_{\phi}} \frac{D_f}{B} for \phi$ |                         |       |  |
|                          |                    | > 10                                                                                                       | ) <sup>0</sup> |                                                                                                                                     |          |                 |                                                  | > 1                     | 00    |  |
| $d_{\gamma}$             | d <sub>q</sub> for | $\phi > 10^{\circ}$                                                                                        | 1              | 1 for all values of $\phi$                                                                                                          |          |                 |                                                  | $d_q$ for $\phi > 10^0$ |       |  |

#### 7.2 Mat Foundation

A mat (or raft) is a thick reinforced concrete slab which supports all the load-bearing walls and column loads of a structure or a large portion of the structure, A mat foundation is more economical than individual footings when the total base area required foe the individual footings exceed about one half of the area covered by the structure. The mat foundation is also better suited when the subsurface strata have erratic properties and contains the compressible lenses. When individual footings are provided where we have erratic substrata, there is very high chance of differential settlement. So, mat foundation is opted before isolated footing.

Like shallow foundation, mat foundation should also be designed against the bearing capacity failure and settlement criterion. As the width of the mat is very large, the bearing capacity is high and therefore, the shear failure generally doesn't occur. Accordingly, the safe settlement pressure (bearing capacity evaluated based on allowable

settlement) generally governs the design, expect for very loose sand (N<5). So, we have evaluated the safe bearing pressure for the mat foundation based on *IS:6403*, for a settlement of 65 mm.

 $q_{safe bearing pressure} = 25.4 (N - 3) R_w kPa$ 

Where,

N = Standard Penetration Value

R<sub>w</sub> = Reduction factor for water table

| Table 7-3: Typical Bearing Capacity Analysis Result of Mat Foundation |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

| <u>Bore Hole NoT17/1N</u>               | Safe Settlement Bearing Pressure kN/m <sup>2</sup> (IS:6403-50 mm Settlement) |       |       |       |       |       |       |       |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|                                         |                                                                               |       |       |       |       |       |       |       |  |  |
| Depth of Foundation, D <sub>f</sub> (m) | 1                                                                             | 3     | 4     | 6     | 7     | 9     | 10    | 12    |  |  |
| SPT N Value                             | 21                                                                            | 25    | 28    | 23    | 63    | 58    | 73    | 50    |  |  |
| Unit wt of soil kN/m3                   | 18                                                                            | 18    | 18    | 18    | 19    | 19    | 19    | 19    |  |  |
| Water Reduction Factor Wy               | 0.5                                                                           | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   |  |  |
|                                         |                                                                               |       |       |       |       |       |       |       |  |  |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                           | 3.0   | 4.0   | 6.0   | 7.0   | 9.0   | 10.0  | 12.0  |  |  |
| Safe Settlement Bearing                 | 220                                                                           | 270   | 210   | 25.4  | 700   | 600   | 000   | 507   |  |  |
| Pressure, (kN/m <sup>2</sup> )          | 229                                                                           | 279   | 318   | 254   | 762   | 699   | 889   | 597   |  |  |
| Modulus of Subgrade                     | 10200                                                                         | 22252 | 25400 | 20220 | 60060 | 55000 | 74400 | 47750 |  |  |
| Reaction, Ks (kN/m <sup>3</sup> )       | 18288                                                                         | 22352 | 25400 | 20320 | 60960 | 55880 | 71120 | 47752 |  |  |

The allowable bearing capacity for different footing size for all tower location are provided in Result and Recommendation section of this report.

#### 7.3 Settlement Analysis

#### For cohesionless soil:

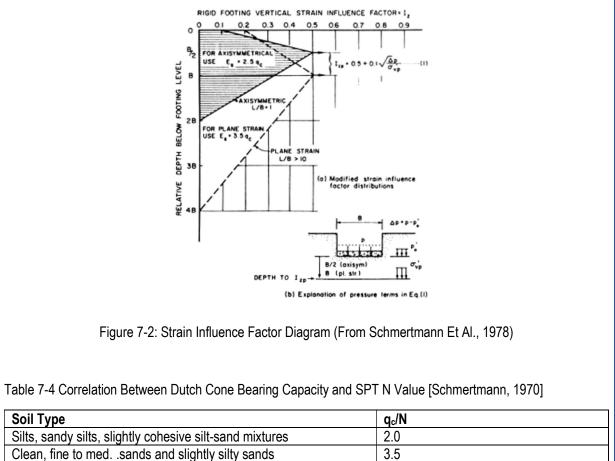
The settlement of granular soils can also be evaluated by the use of a semiempirical strain influence factor proposed by Schmertmann et al. (1978). According to this method, the settlement:

$$S = C_1 C_2 \Delta p \sum_{0}^{2B, 4B} \frac{I_z}{E_s} \Delta Z$$

S = net allowable settlement

 $C_1$  = pressure change correction factor for effective overburdern

$$= 1 - 0.5 \frac{\sigma'_{vo}}{\Lambda n}$$


 $C_2$ = time influence factor = 1 + (0.2)(log(t/0.1))

t = time of interest (in years)

Δp= net foundation pressure = bearing pressure minus initial effective vertical stress

 $I_z$  = vertical strain influence factor (from figure 6-2)

 $E_s$ = soil modulus of deformation (From Schmertmann, 1970) (Es = 2q<sub>c</sub>, where q<sub>c</sub> is dutch cone bearing capacity, which can be evaluated using Table 7-4)



| Soil Type                                                | q <sub>c</sub> /N |  |
|----------------------------------------------------------|-------------------|--|
| Silts, sandy silts, slightly cohesive silt-sand mixtures | 2.0               |  |
| Clean, fine to medsands and slightly silty sands         | 3.5               |  |
| Coarse sands and sands with little gravel                | 5                 |  |
| Sandy gravel and gravel                                  | 6                 |  |

#### 8 Regional Seismicity and Liquefaction

Nepal lies in a seismically active zone, at the interface between two of the world's major tectonic plates. All parts of Nepal are at risk from the effects of severe ground shaking due to earthquakes and there have been many remainders of this within living memory. Kathmandu experienced catastrophic damage in 1934 and an earthquake in the East of Nepal in 1988 severely damaged approximately 6,000 residential buildings. The recent earthquake of April 25, 2015 of Magnitude 7.8 and its aftershocks (reaching up to magnitude 7.3) had severe damage to structures in central and eastern Nepal and took nearly 9,000 lives.

Accordingly, the design of the Project shall also consider the possible risk of damage due to earthquake, and the earthquake loadings shall also be considered in the design of structures.

#### 8.1 Seismic Zoning

The country is subdividing into different seismic zones based on the seismic hazard. The seismic hazard within each zone is assumed to be constant. The Seismic Zoning Factor (Z) represents the Peak Ground Acceleration (PGA) for 475 years return period. The value of Z can be obtained from the Figure 8-1. This seismic zoning map was prepared by Government of Nepal under Nepal National Building Code NBC: 105:2020. The report NBC: 105:2020 also provides the PGA (for 500 years return period) value for different cities/municipalities. The PGA recommended by the NBC: 105:2020 can be adopted for the design of the proposed structures.

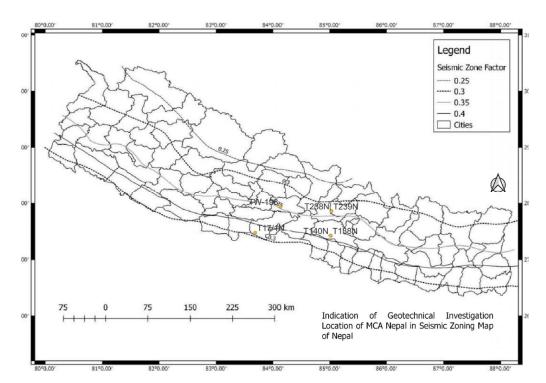



Figure 8-1: Map showing Seismic Zoning of Nepal along with GTI locations.

| Table 8-1: Seismic Zoning Factors for Selected Cities and Municipalities |      |                           |      |                           |      |                           |      |  |
|--------------------------------------------------------------------------|------|---------------------------|------|---------------------------|------|---------------------------|------|--|
| Cities<br>/Municipalities                                                | PGA  | Cities<br>/Municipalities | PGA  | Cities<br>/Municipalities | PGA  | Cities<br>/Municipalities | PGA  |  |
| Baglung                                                                  | 0.3  | Damauli                   | 0.35 | Jaleshwor                 | 0.3  | Musikot                   | 0.3  |  |
| Beni                                                                     | 0.3  | Darchula                  | 0.3  | Janakpur                  | 0.3  | Myanglung                 | 0.35 |  |
| Besishar                                                                 | 0.3  | Dasharathchand            | 0.35 | Jomsom                    | 0.25 | Nepalgunj                 | 0.4  |  |
| Bharatpur                                                                | 0.4  | Dhading                   | 0.3  | Jumla                     | 0.3  | Okhaldhunga               | 0.35 |  |
| Bhimdatta                                                                | 0.3  | Dhangadhi                 | 0.4  | Kalaiya                   | 0.3  | Phidim                    | 0.35 |  |
| Bhimeshwar                                                               | 0.3  | Dhankuta                  | 0.4  | Kamalamai                 | 0.4  | Pokhara                   | 0.3  |  |
| Bhojpur                                                                  | 0.35 | Dharan                    | 0.3  | Kapilbastu                | 0.3  | Pyuthan                   | 0.35 |  |
| Bidur                                                                    | 0.3  | Dhulikhel                 | 0.35 | Kathmandu                 | 0.35 | Rajbiraj                  | 0.3  |  |
| Biratnagar                                                               | 0.3  | Dhunche                   | 0.3  | Khalanga                  | 0.3  | Ramgram                   | 0.4  |  |
| Birendranagar                                                            | 0.35 | Diktel                    | 0.35 | Khandbari                 | 0.3  | Salleri                   | 0.3  |  |
| Birgunj                                                                  | 0.3  | Dipayal                   | 0.35 | Kusma                     | 0.3  | Salyan                    | 0.35 |  |
| Butwal                                                                   | 0.3  | Dunai                     | 0.25 | Lahan                     | 0.3  | Sandhikharka              | 0.35 |  |
| Chainpur                                                                 | 0.3  | Gamgadhi                  | 0.25 | Libang                    | 0.35 | Simikot                   | 0.25 |  |
| Chame                                                                    | 0.25 | Gaur                      | 0.3  | Malangwa                  | 0.3  | Tamghas                   | 0.35 |  |
| Chautara                                                                 | 0.3  | Gorkha                    | 0.3  | Mangalsen                 | 0.35 | Tansen                    | 0.35 |  |
| Dadheldhura                                                              | 0.35 | Gulariya                  | 0.4  | Manma                     | 0.3  | Taplejung                 | 0.3  |  |
| Dailekh                                                                  | 0.35 | Hetauda                   | 0.4  | Manthali                  | 0.3  | Triyuga                   | 0.4  |  |
| Damak                                                                    | 0.3  | llam                      | 0.4  | Martadi                   | 0.3  | Tulsipur                  | 0.4  |  |
|                                                                          |      |                           | 1    | 1                         | -    | Waling                    | 0.35 |  |

Based on the National Seismological Centre, Department of Mines and Geology (DMG) Nepal published Seismic Hazard Map of Nepal showing Bedrock Peak Ground Horizontal Acceleration Contour as shown in Figure 8-2. This figure can also be used to estimate the PGA during design of any civil structures.

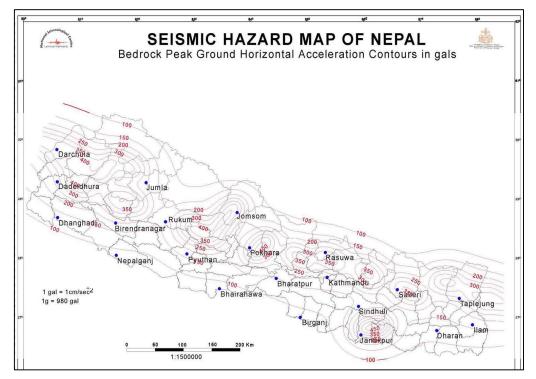



Figure 8-2: Seismic Hazard Map of Nepal Showing Bedrock Peak Ground Horizontal Acceleration Contour

#### 8.2 Seismic Design Parameter

Taking into the account of the above two guidelines published by two different entities Government of Nepal, peak ground acceleration falls between 0.3 to 0.4 associated to a return period of 475 years.

#### 8.3 Evaluation of Liquefaction Triggering: SPT Method

Liquefaction is defined as a phenomenon that occurs in saturated sandy soils that involves the compete transfer of overburden stress from the soil skeleton to the pore fluid under undrained conditions, with the commensurate increase in pore water pressure and reduction in effective stress.

The simplified liquefaction triggering evaluation procedure was first developed by Professor Robert V. Whitman and then subsequently and independently developed by Professor H.B. Seed and I.M. Idriss.

#### 8.3.1 Analysis of Liquefaction Potential

When fine or medium saturated loose sand deposit is subjected to a sudden shock (generated by an earthquake) the mass will densify and consolidate. The pore-water pressure within such layers will increase and results in decrease in effective stress and shear strength of the soil. If the shear strength drops below the applied cyclic shear loadings, the layer is expected to transition to a semi fluid state until excess pore-water pressure dissipates. When liquefaction takes place in a particular soil then the bearing capacity of the soil will be reduced and the soil will fail.

We have followed Seed and Idriss (1971) modified by Idriss and Boulanger (2008) guidelines for the analysis of liquefaction triggering, SPT method. The factor of safety for the liquefaction potential is defined as the ratio of Cyclic Resistance ratio (CRR) and Cyclic stress ratio (CSR). If the ratio is less than one, there is a potential liquefaction in case of the earthquake.

$$CSR = \frac{\tau_{av}}{\sigma'_{v}} = 0.65 \left(\frac{a_{max}}{g}\right) \left(\frac{\sigma_{v}}{\sigma'_{v}}\right) r_{d} \quad (1)$$

Where,

 $a_{max}$  is peak horizontal acceleration

 $\sigma_v$  and  ${\sigma'}_V$  is total and effective vertical stress

$$r_d$$
 is stress reduction factor

$$r_{d} = \exp\{\alpha(z) + \beta(z) \times M_{w}\}; z \le 34 \text{ m} \quad (2)$$

$$(\alpha) = -1.021 - 1.126 \text{SIN}\left(\frac{z}{11.73} + 5.133\right); z \text{ in m} (3)$$

$$\beta(z) = 0.106 + 0.118$$
SIN9 $\left(\frac{z}{11.28} + 5.142\right)$ ; z in m (4)

(MSF) = 6.9 exp
$$\left(\frac{M_w}{4}\right) - 0.058$$
;  $\le 1.8$  (5)

Where MSF is Magnitude scaling factor

$$\begin{split} N_{1,60cs} &= N_{field} * C_N * C_S + \Delta N_{1,60} \quad (6) \\ C_N &= \left(\frac{P_a}{\sigma'_{vo}}\right)^{\alpha(N_{1,60cs})} \leq 1.7 \quad (7) \\ \alpha(N_{1,60cs}) &= 0.78 - 0.0768 \sqrt{N_{1,60cs}}; \ N_{1,60cs} \leq 46 \frac{blws}{ft} \quad (8) \end{split}$$

$$\begin{split} & P_{a} = 101.3 \text{ kPa} \quad (9) \\ & \nabla N_{1,60} = \exp\left(1.63 + \frac{9.7}{\text{FC} + 0.01} - \left(\frac{15.7}{\text{FC} + 0.01}\right)^{2}\right); \text{FC in \%} \quad (10) \\ & \text{CRR}_{\text{M7.5}} = \exp\left\{\frac{N_{1,60\text{CS}}}{14.1} + \left(\frac{N_{1,60\text{CS}}}{126}\right)^{2} - \left(\frac{N_{1,60\text{CS}}}{23.6}\right)^{3} + \left(\frac{N_{1,60\text{CS}}}{25.4}\right)^{4} - 2.8\right\} \leq 0.6 \quad (11) \\ & \text{K}_{\sigma} = 1 - C_{\sigma} \ln\left(\frac{\sigma'_{\text{VO}}}{P_{a}}\right) \leq 0.3 \quad (12) \\ & \text{C}_{\sigma} = \frac{1}{18.9 - 2.55\sqrt{N_{1,60\text{CS}}}} \leq 0.3 \quad (13) \\ & \text{FS}_{\text{Liq}} = \frac{\text{CRR}_{\text{M7.5}}\text{K}_{\sigma}}{\text{CSR}_{\text{M7.5}}} \quad (14) \end{split}$$

The liquefaction triggering analysis based on SPT was analyzed for four borings locations (T238N, T240N, T17/1N and TW198) and found to be non-liquefiable. The detail calculation sheets for Liquefaction Analysis of mentioned tower location are attached in respective annexures. In remaining two locations T138N and T140N, DCPT was performed throughout the depth of boring and found that there is dominance of Gravel and Boulder. Excess porewater pressure will not be generated under such conditions while transferring load from soil skeleton to adjacent pore water. As pore water pressure do not rises progressive loss of strength does not occur. Thus, liquefaction is not likely to occur. Moreover, it is not possible to retrieve samples like SPT during DCPT to obtain fines content requiring to calculate FoS by SPT method.

#### 8.3.2 Mitigation Measures for Liquefaction

To mitigate the effects of liquefaction, the following measures can be taken:

- (a) Soil Improvement: Soil improvement techniques can be used to densify the soil and increase its strength, reducing the potential for liquefaction. Methods such as compaction, vibro-compaction, dynamic compaction, compaction grouting and soil mixing can be employed as per site requirements to improve the soil's resistance to liquefaction.
- (b) Drainage: Good drainage can help to reduce the risk of liquefaction by removing excess water from the soil. This can be achieved by installing drainage systems such as stone column and surface drainage channels.
- (c) Foundations: The design and construction of foundations can be modified to reduce the risk of liquefaction. Measures such as increasing the depth of the foundation or using wider footings can help to stabilize the building.
- (d) Seismic Design: Buildings can be designed to withstand seismic forces, including the potential for liquefaction. This can include the use of reinforced concrete or steel frames, as well as the incorporation of seismic isolation or energy dissipation systems.
- (e) Monitoring: Monitoring the soil and groundwater conditions can help to identify areas that are at risk of liquefaction. This can include the use of piezometers, seismometers, and other sensors to measure changes in the soil and groundwater levels.
- (f) Overall, a comprehensive approach that includes a combination of these measures can help to reduce the risk of liquefaction and mitigate its effects in areas prone to earthquakes.

#### 9 Result and Recommendation

The bore hole logs of bore hole were given in Annex A of this report.

A through perusal of the bore hole reveals that:

- (a) The sub soil strata in the boreholes mainly consists of Gravel and Cobble mixed soil with sand, Gravel and Boulder with sand in tower locations T140N, T138N, T238N and T240N.
- (b) The sub soil strata in the boreholes mainly varies from Clayey Sand, Poorly Graded Sand, Poorly Graded Sand with Clay and Gravel at T17/1N tower location.
- (c) The sub soil strata in the boreholes mainly consists of Well Graded Gravel with Sand and Silt at TW198 tower location.
- (d) Most of the tower locations are located near to riverbank (4 out of 6 locations) so, due to the presence of cobble and boulder DCPT was performed and obtained DCPT value is high which might not represent the actual subsurface strata. Considering the potential bed scour by the river, depth of the ground water table and earthquake induced liquefaction in the sandy strata, it will be prudent decision to opt for deep foundation (cast in place piles, CIP).
- (e) GWT was observed at 3 tower location (T17/1N, T240N and T138N) site however during monsoon season the water table might rise and could be observed in T140N as well.
- (f) The particle size gradation curve shows poorly graded sand with silt and further cobble, coarse gravel to fine sand.

Following results are based on the findings of the geotechnical engineering field subsurface exploration, geotechnical laboratory testing, and geotechnical engineering analyses. Recommendation is provided at each tower based on the site condition and location. Conclusion and recommendations have also drawn upon previous experience with similar site/soil conditions.

- (a) Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths of each site locations given in the annexes.
- (b) As per the discussions with client the existing tower location at changed portion of Hetauda section (T137N, T138N and T139N) can be shifted near to Rapti river bank. In this case the new proposed location possesses the risk of scouring of the foundation strata during the high flood event. So, it is recommended to opt for deep foundation (CIP).
- (c) The changed portion at section of New Butwal India Border 400 kV TL is along the river trench of terai region. The obtained SPT value indicates medium dense type of soil. The obtained bearing capacity at different depths and size of foundation is sufficient enough which varies from 17 t/m<sup>2</sup> to 60 t/m<sup>2</sup>. However, considering the potential bed scour by the river, depth of the ground water table and earthquake induced liquefaction in the sandy strata, it will be prudent decision to adopt deep foundation (cast in place piles, CIP).
- (d) T240N tower location belongs to changed portion at section of New Damauli Ratmate 400 kV TL section. This tower location is located near Trishuli riverbank so, this site possesses the high risk of foundation scouring and inundation during the event of high flood event. Considering this it is recommended to have deep foundation (CIP) Furthermore, it will be prudent decision to opt deep foundation in all such tower location where investigation has not been carried out.

- (e) It is recommended to evaluate the scour potential of the river (for design flood) during the analysis of the foundation (shallow/deep).
- (f) The tower should be designed for the permissible differential settlements and tilt as per the Table 1 (clause 16.3.4) IS Code:1904 (1986).
- (g) As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventually. Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic design code NBC: 105-2020 or IS: 1893-2016 for analysis and design of the tower.
- (h) As a designer, it is important to take into consideration environmental legislation and procedures for the disposal of excavated materials during the design phase of the project. This involves understanding and complying with local, state, and federal regulations related to the management and disposal of soil and other materials that may be excavated during construction. The designer may also need to work with regulatory agencies and other stakeholders to ensure compliance with environmental regulations and to address any concerns related to the project's impact on the environment.
- (i) It is recommended to monitor the water table through a long period by installing piezometers to have a good idea of the groundwater.
- (j) No bed rock was encountered during site investigation.
- (k) Allowable bearing pressure should be re-evaluated during the design stage once the actual foundation width, depth, shape, tilt and ground slope are known. In addition, the impact of raising the elevation of the ground surface to accommodate the proposed development should be further studied.
- (I) The slope of the excavation should be maintained as per site conditions to prevent the slope from collapsing during excavation or construction period.
- (m) Presence of seepage water and consideration of probable rise in water table in monsoon, side fall is eminent. So, at the time of construction of foundation, it is recommended to design appropriate site protection measures based on soil properties obtained on this report.
- (n) An experienced Engineer should inspect excavation of last 30 cm to founding level before the blending of lean concrete. If the soil condition is found different from originally anticipated, additional investigation or redesign of foundation should be carried out.
- (o) It is recommended to carry out the MASW test to measure the shear wave velocity of the tower foundation location, which will help us understand the risk further.
- (p) It is important that a geotechnician must be notified when cohesive soils are encountered to ensure that the design of the foundations is still adequate.

The detail calculations sheets and laboratory data of New Damauli-Ratamate 400 kV D/C TL, Ratamate New Heatuda 400 kV D/C TL, Indo Nepal Border - New Butwal 400 kV D/C TL and New Butwal - New Damauli 400 kV D/C TL is given in Appendix C to Appendix-H.

The Summary of Bearing Capacity for Spread Footing and Mat Footing are highlighted in Table 9-1 to Table 9-7.

Bearing Capacity kN/m<sup>2</sup> Depth of Footing (m) considered Size of footing Based on Foundation Pasad on 10

Table 9-1:Bearing Capacity Results of T238N Tower Location Under Changed Portion of New Damauli-Ratamate 400 Kv D/C TL

| Location                                   | Foundation<br>Classification | for bearing<br>capacity<br>calculation | considered for<br>bearing capacity | shear<br>Faliure<br>criteria | Based on 40<br>mm settlement<br>Criteria | Remarks                                                                                                                                                                                                                            |
|--------------------------------------------|------------------------------|----------------------------------------|------------------------------------|------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                              |                                        | 1 m X 1 m                          | 196                          | 421                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 1.5 m X 1.5 m                      | 235                          | 359                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 2 m X 2 m                          | 274                          | 330                                      |                                                                                                                                                                                                                                    |
|                                            |                              | 1                                      | 2.5 m X 2.5 m                      | 313                          | 313                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 3 m X 3 m                          | 352                          | 302                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 4 m X 4 m                          | 430                          | 288                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 5 m X 5 m                          | 508                          | 280                                      | Note that the allowable bearing capacity of a                                                                                                                                                                                      |
|                                            |                              | 2                                      | 1 m X 1 m                          | 275                          | 421                                      | footing is controlled by shear failur<br>considerations for narrow footing widths<br>However, as the footing width increases, th<br>allowable bearing capacity is limited by th<br>settlement potential of the soils supporting th |
| T238N (New Damauli-<br>Ratamate 400 kV D/C | DFR                          |                                        | 1.5 m X 1.5 m                      | 294                          | 359                                      |                                                                                                                                                                                                                                    |
| TL)                                        | DFK                          |                                        | 2 m X 2 m                          | 314                          | 330                                      |                                                                                                                                                                                                                                    |
| ,                                          |                              |                                        | 2.5 m X 2.5 m                      | 333                          | 313                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 3 m X 3 m                          | 353                          | 302                                      | footing. (FHWA-SA-02-054, Shallow Foundation)                                                                                                                                                                                      |
|                                            |                              |                                        | 4 m X 4 m                          | 392                          | 288                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 5 m X 5 m                          | 431                          | 280                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 1 m X 1 m                          | 392                          | 398                                      |                                                                                                                                                                                                                                    |
|                                            |                              | 3                                      | 1.5 m X 1.5 m                      | 412                          | 339                                      |                                                                                                                                                                                                                                    |
|                                            |                              | J                                      | 2 m X 2 m                          | 431                          | 311                                      |                                                                                                                                                                                                                                    |
|                                            |                              |                                        | 2.5 m X 2.5 m                      | 451                          | 295                                      |                                                                                                                                                                                                                                    |

|                 |                                       | Depth of Footing<br>(m) considered<br>for bearing<br>capacity<br>calculation |                                                       | Bearing C                                | apacity kN/m <sup>2</sup>                |                                                                                               |
|-----------------|---------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------|
| Location        | Location Foundation<br>Classification |                                                                              | Size of footing<br>considered for<br>bearing capacity | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm settlement<br>Criteria | Remarks                                                                                       |
|                 |                                       |                                                                              | 3 m X 3 m                                             | 470                                      | 285                                      |                                                                                               |
|                 |                                       |                                                                              | 4 m X 4 m                                             | 509                                      | 272                                      |                                                                                               |
|                 |                                       |                                                                              | 5 m X 5 m                                             | 548                                      | 265                                      |                                                                                               |
|                 |                                       |                                                                              | 1 m X 1 m                                             | 894                                      | 1264                                     |                                                                                               |
|                 |                                       |                                                                              | 1.5 m X 1.5 m                                         | 932                                      | 1077                                     |                                                                                               |
|                 |                                       |                                                                              | 2 m X 2 m                                             | 970                                      | 989                                      |                                                                                               |
|                 |                                       | 4                                                                            | 2.5 m X 2.5 m                                         | 1008                                     | 938                                      |                                                                                               |
|                 |                                       |                                                                              | 3 m X 3 m                                             | 1046                                     | 905                                      |                                                                                               |
|                 |                                       |                                                                              | 4 m X 4 m                                             | 1122                                     | 864                                      |                                                                                               |
|                 |                                       |                                                                              | 5 m X 5 m                                             | 1198                                     | 840                                      |                                                                                               |
|                 |                                       |                                                                              | 1 m X 1 m                                             | 1099                                     | 1264                                     |                                                                                               |
|                 |                                       |                                                                              | 1.5 m X 1.5 m                                         | 1137                                     | 1077                                     |                                                                                               |
|                 |                                       |                                                                              | 2 m X 2 m                                             | 1175                                     | 989                                      |                                                                                               |
|                 |                                       | 5                                                                            | 2.5 m X 2.5 m                                         | 1213                                     | 938                                      |                                                                                               |
|                 |                                       |                                                                              | 3 m X 3 m                                             | 1251                                     | 905                                      |                                                                                               |
|                 |                                       |                                                                              | 4 m X 4 m                                             | 1327                                     | 864                                      |                                                                                               |
|                 |                                       |                                                                              | 5 m X 5 m                                             | 1403                                     | 840                                      |                                                                                               |
| Recommendations | 2. Nepal is                           | on seismic forces; it i                                                      | perience very strong                                  | earthquake ev                            | ventually. Therefore,                    | , the Foundation Design Engineer must pay o<br>105-2020 or IS: 1893-2016 for analysis and des |

| Tab                                        | le 9-2: Bearing Ca           | pacity Results of T240                                   | N Tower Location Un                                   | der Changed F                            | Portion of New Dam                       | nauli-Ratamate 400 kV D/C TL                                                                                                                                                                                                                                              |
|--------------------------------------------|------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                              | Depth of Footing                                         |                                                       | Bearing C                                | apacity kN/m <sup>2</sup>                | _                                                                                                                                                                                                                                                                         |
| Location                                   | Foundation<br>Classification | (m) considered<br>for bearing<br>capacity<br>calculation | Size of footing<br>considered for<br>bearing capacity | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm settlement<br>Criteria | Remarks                                                                                                                                                                                                                                                                   |
|                                            |                              |                                                          | 1 m X 1 m                                             | 196                                      | 421                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 1.5 m X 1.5 m                                         | 235                                      | 359                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 2 m X 2 m                                             | 274                                      | 330                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              | 1                                                        | 2.5 m X 2.5 m                                         | 313                                      | 313                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 3 m X 3 m                                             | 352                                      | 302                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 4 m X 4 m                                             | 430                                      | 288                                      | Note that the allowable bearing capacity of a footing is controlled by shear failure considerations for narrow footing widths. However, as the footing width increases, the allowable bearing capacity is limited by the settlement potential of the soils supporting the |
|                                            |                              |                                                          | 5 m X 5 m                                             | 508                                      | 280                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 1 m X 1 m                                             | 275                                      | 421                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 1.5 m X 1.5 m                                         | 294                                      | 359                                      |                                                                                                                                                                                                                                                                           |
| TO JONI (Name Damanili                     |                              |                                                          | 2 m X 2 m                                             | 314                                      | 330                                      |                                                                                                                                                                                                                                                                           |
| T240N (New Damauli-<br>Ratamate 400 kV D/C | WET                          | 2                                                        | 2.5 m X 2.5 m                                         | 333                                      | 313                                      |                                                                                                                                                                                                                                                                           |
| TL)                                        |                              |                                                          | 3 m X 3 m                                             | 353                                      | 302                                      |                                                                                                                                                                                                                                                                           |
| ,                                          |                              |                                                          | 4 m X 4 m                                             | 392                                      | 288                                      |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 5 m X 5 m                                             | 431                                      | 280                                      | footing. (FHWA-SA-02-054, Shallow Foundation)                                                                                                                                                                                                                             |
|                                            |                              |                                                          | 1 m X 1 m                                             | 690                                      | 2270                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 1.5 m X 1.5 m                                         | 728                                      | 1935                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 2 m X 2 m                                             | 766                                      | 1777                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              | 3                                                        | 2.5 m X 2.5 m                                         | 804                                      | 1685                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 3 m X 3 m                                             | 842                                      | 1626                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 4 m X 4 m                                             | 918                                      | 1553                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              |                                                          | 5 m X 5 m                                             | 994                                      | 1510                                     |                                                                                                                                                                                                                                                                           |
|                                            |                              | 4                                                        | 1 m X 1 m                                             | 894                                      | 2153                                     |                                                                                                                                                                                                                                                                           |

|          |                              | Depth of Footing                                         |                                                       | Bearing C                                | apacity kN/m <sup>2</sup>                |         |
|----------|------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------|---------|
| Location | Foundation<br>Classification | (m) considered<br>for bearing<br>capacity<br>calculation | Size of footing<br>considered for<br>bearing capacity | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm settlement<br>Criteria | Remarks |
|          |                              |                                                          | 1.5 m X 1.5 m                                         | 932                                      | 1835                                     |         |
|          |                              |                                                          | 2 m X 2 m                                             | 970                                      | 1685                                     |         |
|          |                              |                                                          | 2.5 m X 2.5 m                                         | 1008                                     | 1598                                     |         |
|          |                              |                                                          | 3 m X 3 m                                             | 1046                                     | 1542                                     |         |
|          |                              |                                                          | 4 m X 4 m                                             | 1122                                     | 1472                                     |         |
|          |                              |                                                          | 5 m X 5 m                                             | 1198                                     | 1432                                     |         |
|          |                              |                                                          | 1 m X 1 m                                             | 1099                                     | 2153                                     |         |
|          |                              |                                                          | 1.5 m X 1.5 m                                         | 1137                                     | 1835                                     |         |
|          |                              |                                                          | 2 m X 2 m                                             | 1175                                     | 1685                                     |         |
|          |                              | 5                                                        | 2.5 m X 2.5 m                                         | 1213                                     | 1598                                     |         |
|          |                              |                                                          | 3 m X 3 m                                             | 1251                                     | 1542                                     |         |
|          |                              |                                                          | 4 m X 4 m                                             | 1327                                     | 1472                                     |         |
|          |                              |                                                          | 5 m X 5 m                                             | 1403                                     | 1432                                     |         |

|                 |                                                                                  | Depth of Footing                                                                                                                        |                                                                                                                               | Bearing                                                                                  | Capacity kN/m <sup>2</sup>                                                                                      |                                                                                                                                                                                                                                                                                                                                               |
|-----------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location        | Foundation<br>Classification                                                     | (m) considered<br>for bearing<br>capacity<br>calculation                                                                                | Size of footing<br>considered for<br>bearing capacity                                                                         | Based on<br>shear<br>Faliure<br>criteria                                                 | Based on 40<br>mm settlemen<br>Criteria                                                                         | Reliains                                                                                                                                                                                                                                                                                                                                      |
| Recommendations | DCPT v<br>table au<br>CIP).<br>2. Adopt a<br>3. Nepal i<br>attentio<br>of the to | value might not repres<br>nd earthquake induce<br>a safe bearing capacit<br>is very sensitive to e<br>in on seismic forces; it<br>ower. | sent the actual subsur<br>d liquefaction in the s<br>y for spread and Mat/<br>xperience very stron<br>t is recommended to for | face strata. Co<br>sandy strata, it<br>Raft foundatio<br>g earthquake<br>ollow the seisn | nsidering the poten<br>will be prudent de<br>n at different depthe<br>eventually. Therefo<br>nic design code NB | obble and boulder DCPT was performed, the obtaine<br>ntial bed scour by the river, depth of the ground wate<br>ecision to opt for deep foundation (cast in place piles<br>s.<br>ore, the Foundation Design Engineer must pay du<br>IC: 105-2020 or IS: 1893-2016 for analysis and desig<br>nity where investigation has not been carried out. |
|                 |                                                                                  |                                                                                                                                         | · · ·                                                                                                                         |                                                                                          |                                                                                                                 | ate New Heatuda 400 kV D/C TL                                                                                                                                                                                                                                                                                                                 |
|                 | Table 9-3: Bearing Ca                                                            | apacity Results of T13                                                                                                                  | · · ·                                                                                                                         | nder Changeo                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               |
| Location        | Table 9-3: Bearing Ca                                                            |                                                                                                                                         | · · ·                                                                                                                         | nder Changeo                                                                             | Portion of Ratama                                                                                               |                                                                                                                                                                                                                                                                                                                                               |
| Location        | Table 9-3: Bearing Ca                                                            | apacity Results of T13<br>Depth of Footing<br>(m) considered<br>for bearing<br>capacity                                                 | Size of footing<br>considered for                                                                                             | nder Changeo<br>Bearing C<br>Based on<br>shear<br>Faliure                                | l Portion of Ratama<br>apacity kN/m <sup>2</sup><br>Based on 40<br>mm settlement                                | ate New Heatuda 400 kV D/C TL                                                                                                                                                                                                                                                                                                                 |
|                 | Table 9-3: Bearing Ca                                                            | apacity Results of T13<br>Depth of Footing<br>(m) considered<br>for bearing<br>capacity                                                 | Size of footing<br>considered for<br>bearing capacity                                                                         | nder Changeo<br>Bearing C<br>Based on<br>shear<br>Faliure<br>criteria                    | l Portion of Ratama<br>apacity kN/m²<br>Based on 40<br>mm settlement<br>Criteria                                | ate New Heatuda 400 kV D/C TL                                                                                                                                                                                                                                                                                                                 |

|          |                              | Depth of Footing                                         |                                                       | Bearing C                                | apacity kN/m <sup>2</sup>                |                                                         |
|----------|------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------------------------------|
| Location | Foundation<br>Classification | (m) considered<br>for bearing<br>capacity<br>calculation | Size of footing<br>considered for<br>bearing capacity | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm settlement<br>Criteria | Remarks                                                 |
|          |                              |                                                          | 2.5 m X 2.5 m                                         | 313                                      | 191                                      | increases, the allowable bearing capacity is limited    |
|          |                              |                                                          | 3 m X 3 m                                             | 352                                      | 184                                      | by the settlement potential of the soils supporting the |
|          |                              |                                                          | 4 m X 4 m                                             | 430                                      | 176                                      | footing. (FHWA-SA-02-054, Shallow Foundation)           |
|          |                              |                                                          | 5 m X 5 m                                             | 508                                      | 171                                      |                                                         |
|          |                              |                                                          | 1 m X 1 m                                             | 275                                      | 257                                      |                                                         |
|          |                              |                                                          | 1.5 m X 1.5 m                                         | 294                                      | 219                                      |                                                         |
|          |                              |                                                          | 2 m X 2 m                                             | 314                                      | 201                                      |                                                         |
|          |                              | 2                                                        | 2.5 m X 2.5 m                                         | 333                                      | 191                                      |                                                         |
|          |                              |                                                          | 3 m X 3 m                                             | 353                                      | 184                                      |                                                         |
|          |                              |                                                          | 4 m X 4 m                                             | 392                                      | 176                                      |                                                         |
|          |                              |                                                          | 5 m X 5 m                                             | 431                                      | 171                                      |                                                         |
|          |                              |                                                          | 1 m X 1 m                                             | 690                                      | 2270                                     |                                                         |
|          |                              |                                                          | 1.5 m X 1.5 m                                         | 728                                      | 1935                                     |                                                         |
|          |                              |                                                          | 2 m X 2 m                                             | 766                                      | 1777                                     |                                                         |
|          |                              | 3                                                        | 2.5 m X 2.5 m                                         | 804                                      | 1685                                     |                                                         |
|          |                              |                                                          | 3 m X 3 m                                             | 842                                      | 1626                                     |                                                         |
|          |                              |                                                          | 4 m X 4 m                                             | 918                                      | 1553                                     |                                                         |
|          |                              |                                                          | 5 m X 5 m                                             | 994                                      | 1510                                     |                                                         |
|          |                              |                                                          | 1 m X 1 m                                             | 894                                      | 1592                                     |                                                         |
|          |                              |                                                          | 1.5 m X 1.5 m                                         | 932                                      | 1356                                     |                                                         |
|          |                              | 4                                                        | 2 m X 2 m                                             | 970                                      | 1246                                     |                                                         |
|          |                              |                                                          | 2.5 m X 2.5 m                                         | 1008                                     | 1181                                     |                                                         |
|          |                              |                                                          | 3 m X 3 m                                             | 1046                                     | 1140                                     |                                                         |

| Location        | Foundation<br>Classification                                    | Depth of Footing<br>(m) considered<br>for bearing<br>capacity<br>calculation                                                 | Size of footing<br>considered for<br>bearing capacity<br>4 m X 4 m<br>5 m X 5 m<br>1 m X 1 m                                    | Based on<br>shear<br>Faliure<br>criteria<br>1122<br>1198                                      | Based on 40<br>mm settlement<br>Criteria<br>1088<br>1058                                                             | Remarks                                                                                                                                                                                                                                                                                                                         |
|-----------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                 |                                                                                                                              | 5 m X 5 m<br>1 m X 1 m                                                                                                          | 1198                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              | 1 m X 1 m                                                                                                                       |                                                                                               | 1058                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              |                                                                                                                                 | 1000                                                                                          |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              |                                                                                                                                 | 1099                                                                                          | 1592                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              | 1.5 m X 1.5 m                                                                                                                   | 1137                                                                                          | 1356                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              | 2 m X 2 m                                                                                                                       | 1175                                                                                          | 1246                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 | 5                                                                                                                            | 2.5 m X 2.5 m                                                                                                                   | 1213                                                                                          | 1181                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              | 3 m X 3 m                                                                                                                       | 1251                                                                                          | 1140                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              | 4 m X 4 m                                                                                                                       | 1327                                                                                          | 1088                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
|                 |                                                                 |                                                                                                                              | 5 m X 5 m                                                                                                                       | 1403                                                                                          | 1058                                                                                                                 |                                                                                                                                                                                                                                                                                                                                 |
| Recommendations | DCPT va<br>table and<br>2. Adopt a s<br>3. Nepal is<br>on seism | alue might not represe<br>l earthquake induced<br>safe bearing capacity<br>very sensitive to expe<br>ic forces; it is recomm | ent the actual subsurfa<br>liquefaction in the san<br>for spread and Mat/Ra<br>rience very strong ear<br>ended to follow the se | ace strata. Cor<br>dy strata, it will<br>aft foundation a<br>thquake event<br>ismic design co | nsidering the potenti<br>I be prudent decision<br>at different depths.<br>ually. Therefore, the<br>ode NBC: 105-2020 | ble and boulder DCPT was performed, the obtainer<br>al bed scour by the river, depth of the ground water<br>to opt for deep foundation (cast in place piles, CIP<br>Foundation Design Engineer must pay due attention<br>or IS: 1893-2016 for analysis and design of the tower<br>where investigation has not been carried out. |

| Table 9-4          | 4: Bearing Capacity          | Presults of T140N T                                                 | ower Location Unde                                       | -                                        | tion of Ratamate<br>apacity kN/m <sup>2</sup> | New Heatuda 400 kV D/C TL                                                                                                                                                                                                                                                 |
|--------------------|------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location           | Foundation<br>Classification | Footing (m)<br>considered for<br>bearing<br>capacity<br>calculation | Size of footing<br>considered for<br>bearing<br>capacity | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm<br>settlement<br>Criteria   | Remarks                                                                                                                                                                                                                                                                   |
|                    |                              |                                                                     | 1 m X 1 m                                                | 357                                      | 1873                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 1.5 m X 1.5 m                                            | 433                                      | 1596                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 2 m X 2 m                                                | 509                                      | 1465                                          |                                                                                                                                                                                                                                                                           |
|                    |                              | 1                                                                   | 2.5 m X 2.5 m                                            | 585                                      | 1390                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 3 m X 3 m                                                | 661                                      | 1341                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 4 m X 4 m                                                | 813                                      | 1280                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 5 m X 5 m                                                | 965                                      | 1245                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 1 m X 1 m                                                | 485                                      | 1873                                          |                                                                                                                                                                                                                                                                           |
|                    |                              | 2                                                                   | 1.5 m X 1.5 m                                            | 523                                      | 1596                                          | Note that the allowable bearing capacity of<br>a footing is controlled by shear failure<br>considerations for narrow footing widths.<br>However, as the footing width increases,<br>the allowable bearing capacity is limited by<br>the settlement potential of the soils |
|                    |                              |                                                                     | 2 m X 2 m                                                | 561                                      | 1465                                          |                                                                                                                                                                                                                                                                           |
| T140N (Ratamate    |                              |                                                                     | 2.5 m X 2.5 m                                            | 599                                      | 1390                                          |                                                                                                                                                                                                                                                                           |
| New Heatuda 400 kV | DRY                          |                                                                     | 3 m X 3 m                                                | 637                                      | 1341                                          |                                                                                                                                                                                                                                                                           |
| D/C TL)            |                              |                                                                     | 4 m X 4 m                                                | 713                                      | 1280                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 5 m X 5 m                                                | 789                                      | 1245                                          | supporting the footing. (FHWA-SA-02-                                                                                                                                                                                                                                      |
|                    |                              |                                                                     | 1 m X 1 m                                                | 590                                      | 1404                                          | 054, Shallow Foundation)                                                                                                                                                                                                                                                  |
|                    |                              |                                                                     | 1.5 m X 1.5 m                                            | 728                                      | 1197                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 2 m X 2 m                                                | 766                                      | 1099                                          |                                                                                                                                                                                                                                                                           |
|                    |                              | 3                                                                   | 2.5 m X 2.5 m                                            | 804                                      | 1042                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 3 m X 3 m                                                | 842                                      | 1006                                          |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 4 m X 4 m                                                | 918                                      | 960                                           |                                                                                                                                                                                                                                                                           |
|                    |                              |                                                                     | 5 m X 5 m                                                | 994                                      | 934                                           |                                                                                                                                                                                                                                                                           |
|                    |                              | 4                                                                   | 1 m X 1 m                                                | 894                                      | 1919                                          |                                                                                                                                                                                                                                                                           |
|                    |                              | 4                                                                   | 1.5 m X 1.5 m                                            | 932                                      | 1635                                          |                                                                                                                                                                                                                                                                           |

|                 |                                                                                       | Depth of                                                                                                                                                                                         |                                                                                                                                                  | Bearing C                                                                                           | apacity kN/m <sup>2</sup>                                                                                       |                                                                                                                                                                                                                                                                                        |
|-----------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location        | Foundation<br>Classification                                                          | Footing (m)<br>considered for<br>bearing<br>capacity<br>calculation                                                                                                                              | Size of footing<br>considered for<br>bearing<br>capacity                                                                                         | Based on<br>shear<br>Faliure<br>criteria                                                            | Based on 40<br>mm<br>settlement<br>Criteria                                                                     | Remarks                                                                                                                                                                                                                                                                                |
|                 |                                                                                       |                                                                                                                                                                                                  | 2 m X 2 m                                                                                                                                        | 970                                                                                                 | 1502                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 2.5 m X 2.5 m                                                                                                                                    | 1008                                                                                                | 1425                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 3 m X 3 m                                                                                                                                        | 1046                                                                                                | 1374                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 4 m X 4 m                                                                                                                                        | 1122                                                                                                | 1312                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 5 m X 5 m                                                                                                                                        | 1198                                                                                                | 1276                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 1 m X 1 m                                                                                                                                        | 1099                                                                                                | 191                                                                                                             |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 1.5 m X 1.5 m                                                                                                                                    | 1137                                                                                                | 1635                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 2 m X 2 m                                                                                                                                        | 1175                                                                                                | 1502                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       | 5                                                                                                                                                                                                | 2.5 m X 2.5 m                                                                                                                                    | 1213                                                                                                | 1425                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 3 m X 3 m                                                                                                                                        | 1251                                                                                                | 1374                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 4 m X 4 m                                                                                                                                        | 1327                                                                                                | 1312                                                                                                            |                                                                                                                                                                                                                                                                                        |
|                 |                                                                                       |                                                                                                                                                                                                  | 5 m X 5 m                                                                                                                                        | 1403                                                                                                | 1276                                                                                                            |                                                                                                                                                                                                                                                                                        |
| Recommendations | the obta<br>depth of<br>deep fou<br>2. Adopt a<br>3. Nepal is<br>due atte<br>analysis | ined DCPT value m<br>f the ground water ta<br>undation (cast in place<br>safe bearing capaci-<br>very sensitive to exp<br>ention on seismic for<br>and design of the to<br>e wise decision to an | ight not represent the<br>ble and earthquake<br>ce piles, CIP).<br>ty for spread and Ma<br>berience very strong<br>ces; it is recomment<br>ower. | e actual subsu<br>induced liquefa<br>t/Raft foundation<br>earthquake evolution<br>ded to follow the | rface strata. Consi<br>action in the sandy<br>on at different depti<br>entually. Therefore<br>he seismic design | cobble and boulder DCPT was performed,<br>dering the potential bed scour by the river,<br>strata, it will be prudent decision to opt for<br>hs.<br>, the Foundation Design Engineer must pay<br>code NBC: 105-2020 or IS: 1893-2016 for<br>e vicinity where investigation has not been |

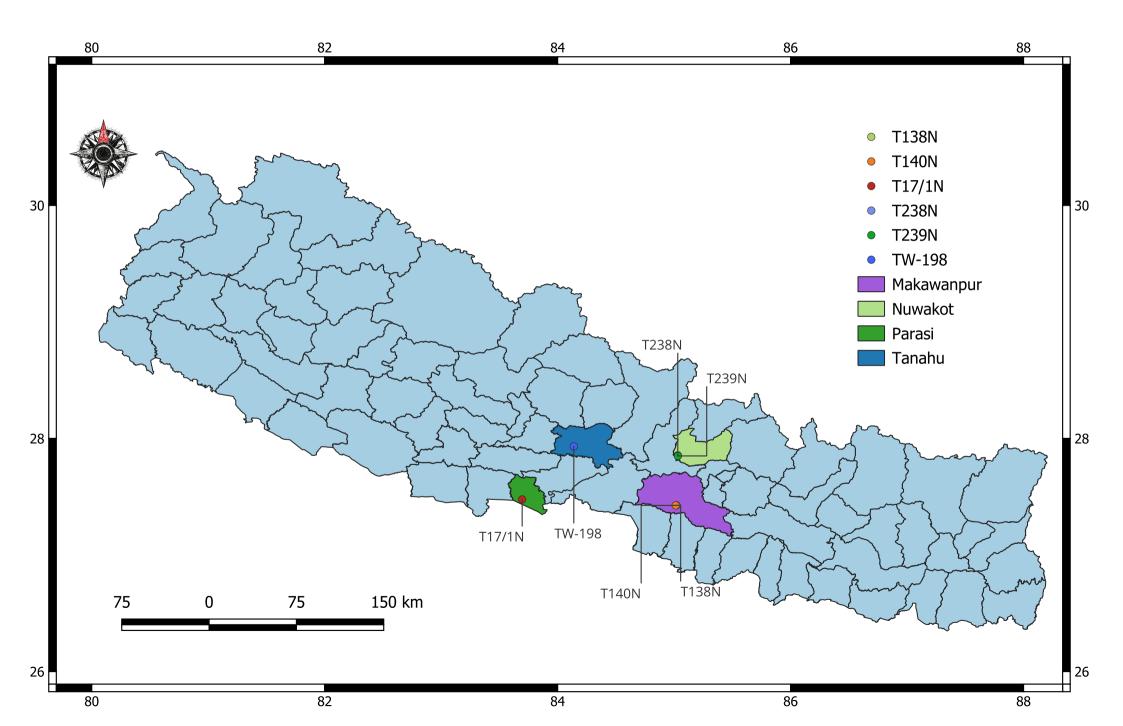
|                     |                              | Depth of                                                            | 0:                                                                         | Bearing C                                | apacity kN/m <sup>2</sup>                   |                                                                                                                                                                                                                               |
|---------------------|------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location            | Foundation<br>Classification | Footing (m)<br>considered for<br>bearing<br>capacity<br>calculation | considered for<br>bearing<br>capacityconsidered for<br>bearing<br>capacity | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm<br>settlement<br>Criteria | Remarks                                                                                                                                                                                                                       |
|                     |                              |                                                                     | 1 m X 1 m                                                                  | 172                                      | 421                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 1.5 m X 1.5 m                                                              | 205                                      | 359                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 2 m X 2 m                                                                  | 239                                      | 330                                         |                                                                                                                                                                                                                               |
|                     |                              | 1                                                                   | 2.5 m X 2.5 m                                                              | 272                                      | 313                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 3 m X 3 m                                                                  | 306                                      | 302                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 4 m X 4 m                                                                  | 373                                      | 288                                         | Note that the allowable bearing capacity<br>of a footing is controlled by shear failure<br>considerations for narrow footing widths.<br>However, as the footing width increases,<br>the allowable bearing capacity is limited |
|                     |                              |                                                                     | 5 m X 5 m                                                                  | 440                                      | 280                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 1 m X 1 m                                                                  | 256                                      | 421                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 1.5 m X 1.5 m                                                              | 274                                      | 359                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 2 m X 2 m                                                                  | 291                                      | 330                                         |                                                                                                                                                                                                                               |
| T17/1N (Indo Nepal  |                              | 2                                                                   | 2.5 m X 2.5 m                                                              | 309                                      | 313                                         |                                                                                                                                                                                                                               |
| Border - New Butwal | WET                          |                                                                     | 3 m X 3 m                                                                  | 327                                      | 302                                         |                                                                                                                                                                                                                               |
| 400 kV D/C TL)      |                              |                                                                     | 4 m X 4 m                                                                  | 362                                      | 288                                         | by the settlement potential of the soi                                                                                                                                                                                        |
|                     |                              |                                                                     | 5 m X 5 m                                                                  | 398                                      | 280                                         | supporting the footing. (FHWA-SA-02                                                                                                                                                                                           |
|                     |                              |                                                                     | 1 m X 1 m                                                                  | 366                                      | 515                                         | 054, Shallow Foundation)                                                                                                                                                                                                      |
|                     |                              |                                                                     | 1.5 m X 1.5 m                                                              | 384                                      | 439                                         | 1                                                                                                                                                                                                                             |
|                     |                              |                                                                     | 2 m X 2 m                                                                  | 402                                      | 403                                         |                                                                                                                                                                                                                               |
|                     |                              | 3                                                                   | 2.5 m X 2.5 m                                                              | 419                                      | 382                                         | -                                                                                                                                                                                                                             |
|                     |                              |                                                                     | 3 m X 3 m                                                                  | 437                                      | 369                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 4 m X 4 m                                                                  | 473                                      | 352                                         |                                                                                                                                                                                                                               |
|                     |                              |                                                                     | 5 m X 5 m                                                                  | 508                                      | 342                                         |                                                                                                                                                                                                                               |
|                     |                              | 4                                                                   | 1 m X 1 m                                                                  | 476                                      | 585                                         |                                                                                                                                                                                                                               |
|                     |                              | 4                                                                   | 1.5 m X 1.5 m                                                              | 498                                      | 499                                         |                                                                                                                                                                                                                               |

|                 |                                                                          | Depth of                                                                                                                                                                   |                                                                                                                                     | Bearing Ca                                                                                      | apacity kN/m <sup>2</sup>                                                                                         |         |
|-----------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------|
| Location        | Foundation<br>Classification                                             | Footing (m)<br>considered for<br>bearing<br>capacity<br>calculation                                                                                                        | Size of footing<br>considered for<br>bearing<br>capacity                                                                            | Based on<br>shear<br>Faliure<br>criteria                                                        | Based on 40<br>mm<br>settlement<br>Criteria                                                                       | Remarks |
|                 |                                                                          |                                                                                                                                                                            | 2 m X 2 m                                                                                                                           | 512                                                                                             | 458                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 2.5 m X 2.5 m                                                                                                                       | 530                                                                                             | 434                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 3 m X 3 m                                                                                                                           | 547                                                                                             | 419                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 4 m X 4 m                                                                                                                           | 583                                                                                             | 400                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 5 m X 5 m                                                                                                                           | 618                                                                                             | 389                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 1 m X 1 m                                                                                                                           | 587                                                                                             | 585                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 1.5 m X 1.5 m                                                                                                                       | 604                                                                                             | 499                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 2 m X 2 m                                                                                                                           | 622                                                                                             | 458                                                                                                               |         |
|                 |                                                                          | 5                                                                                                                                                                          | 2.5 m X 2.5 m                                                                                                                       | 640                                                                                             | 434                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 3 m X 3 m                                                                                                                           | 657                                                                                             | 419                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 4 m X 4 m                                                                                                                           | 693                                                                                             | 400                                                                                                               |         |
|                 |                                                                          |                                                                                                                                                                            | 5 m X 5 m                                                                                                                           | 728                                                                                             | 389                                                                                                               |         |
| Recommendations | consider<br>sandy s<br>2. Adopt a<br>3. Nepal is<br>pay due<br>for analy | ring the potential bed<br>trata, it will be prude<br>safe bearing capaci<br>very sensitive to ex<br>attention on seismic<br>ysis and design of the<br>wise decision to add | d scour by the river,<br>nt decision to adopt<br>ty for spread and Ma<br>perience very strong<br>c forces; it is recomm<br>e tower. | depth of the gro<br>deep foundatic<br>at/Raft foundati<br>earthquake events<br>nended to follow | ound water table a<br>on (cast in place pil<br>on at different dep<br>ventually. Therefor<br>w the seismic design |         |

|                                |                              |                                                                     | Size of footing                       | Bearing C                             | apacity kN/m <sup>2</sup>                             | _                                                                                                                                                                                                                                                                    |                                          |                                             |         |
|--------------------------------|------------------------------|---------------------------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|---------|
| Location                       | Foundation<br>Classification | Footing (m)<br>considered for<br>bearing<br>capacity<br>calculation | considered for<br>bearing<br>capacity | considered for<br>bearing<br>capacity | considered for consid<br>bearing bear<br>capacity cap | Size of footing<br>considered for<br>bearing<br>capacity                                                                                                                                                                                                             | Based on<br>shear<br>Faliure<br>criteria | Based on 40<br>mm<br>settlement<br>Criteria | Remarks |
|                                |                              |                                                                     | 1 m X 1 m                             | 224                                   | 702                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 1.5 m X 1.5 m                         | 269                                   | 598                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 2 m X 2 m                             | 314                                   | 549                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              | 1                                                                   | 2.5 m X 2.5 m                         | 360                                   | 521                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 3 m X 3 m                             | 405                                   | 503                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 4 m X 4 m                             | 496                                   | 480                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 5 m X 5 m                             | 586                                   | 467                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 1 m X 1 m                             | 329                                   | 702                                                   | Note that the allowable bearing capacity of a footing is controlled by shear failure considerations for narrow footing widths However, as the footing width increases, the allowable bearing capacity is limited by the settlement potential of the soils supporting |                                          |                                             |         |
|                                |                              |                                                                     | 1.5 m X 1.5 m                         | 353                                   | 598                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 2 m X 2 m                             | 377                                   | 549                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
| TW198 (New                     |                              | 2                                                                   | 2.5 m X 2.5 m                         | 401                                   | 521                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
| Butwal - New<br>Damauli 400 kV | DFR                          |                                                                     | 3 m X 3 m                             | 424                                   | 503                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
| D/C TL)                        |                              |                                                                     | 4 m X 4 m                             | 472                                   | 480                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 5 m X 5 m                             | 520                                   | 467                                                   | the footing. (FHWA-SA-02-054, Shallow                                                                                                                                                                                                                                |                                          |                                             |         |
|                                |                              |                                                                     | 1 m X 1 m                             | 532                                   | 936                                                   | Foundation)                                                                                                                                                                                                                                                          |                                          |                                             |         |
|                                |                              |                                                                     | 1.5 m X 1.5 m                         | 560                                   | 798                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 2 m X 2 m                             | 588                                   | 733                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              | 3                                                                   | 2.5 m X 2.5 m                         | 616                                   | 695                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 3 m X 3 m                             | 644                                   | 670                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 4 m X 4 m                             | 700                                   | 640                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              |                                                                     | 5 m X 5 m                             | 755                                   | 622                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              | 4                                                                   | 1 m X 1 m                             | 894                                   | 1100                                                  |                                                                                                                                                                                                                                                                      |                                          |                                             |         |
|                                |                              | 4                                                                   | 1.5 m X 1.5 m                         | 932                                   | 937                                                   |                                                                                                                                                                                                                                                                      |                                          |                                             |         |

| 3  m X 3 m $1046$ $788$ $4  m X 4 m$ $1122$ $752$ $5  m X 5 m$ $1198$ $731$ $1  m X 1 m$ $1099$ $1100$ $1.5  m X 1.5 m$ $1137$ $937$ $2  m X 2 m$ $1175$ $861$ $2.5  m X 2.5 m$ $1213$ $817$ $3  m X 3 m$ $1251$ $788$ $4  m X 4 m$ $1327$ $752$ $5  m X 5 m$ $1403$ $731$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 m X 3 m $1046$ $788$ $4 m X 4 m$ $1122$ $752$ $5 m X 5 m$ $1198$ $731$ $1 m X 1 m$ $1099$ $1100$ $1.5 m X 1.5 m$ $1137$ $937$ $2 m X 2 m$ $1175$ $861$ $2.5 m X 2.5 m$ $1213$ $817$ $3 m X 3 m$ $1251$ $788$ $4 m X 4 m$ $1327$ $752$ $5 m X 5 m$ $1403$ $731$ 1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake event Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                         |                                             | 2 m X 2 m             | 970                                 | 861                                | -                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|---------------------------------------------|-----------------------|-------------------------------------|------------------------------------|--------------------------------|--|
| 4  m X 4 m $1122$ $752$ $5  m X 5 m$ $1198$ $731$ $1  m X 1 m$ $1099$ $1100$ $1.5  m X 1.5 m$ $1137$ $937$ $2  m X 2 m$ $1175$ $861$ $5$ $2.5  m X 2.5 m$ $1213$ $817$ $3  m X 3 m$ $1251$ $788$ $4  m X 4 m$ $1327$ $752$ $5  m X 5 m$ $1403$ $731$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  m X 4 m $1122$ $752$ $5  m X 5 m$ $1198$ $731$ $1  m X 1 m$ $1099$ $1100$ $1.5  m X 1.5 m$ $1137$ $937$ $2  m X 2 m$ $1175$ $861$ $5$ $2.5  m X 2.5 m$ $1213$ $817$ $3  m X 3 m$ $1251$ $788$ $4  m X 4 m$ $1327$ $752$ $5  m X 5 m$ $1403$ $731$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                         |                                             | 2.5 m X 2.5 m         | 1008                                | 817                                | -                              |  |
| 5 m X 5 m $1198$ $731$ $1 m X 1 m$ $1099$ $1100$ $1.5 m X 1.5 m$ $1137$ $937$ $2 m X 2 m$ $1175$ $861$ $5$ $2.5 m X 2.5 m$ $1213$ $817$ $3 m X 3 m$ $1251$ $788$ $4 m X 4 m$ $1327$ $752$ $5 m X 5 m$ $1403$ $731$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 m X 5 m $1198$ $731$ $1 m X 1 m$ $1099$ $1100$ $1.5 m X 1.5 m$ $1137$ $937$ $2 m X 2 m$ $1175$ $861$ $5$ $2.5 m X 2.5 m$ $1213$ $817$ $3 m X 3 m$ $1251$ $788$ $4 m X 4 m$ $1327$ $752$ $5 m X 5 m$ $1403$ $731$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                         |                                             |                       |                                     |                                    | -                              |  |
| ecommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                         |                                             |                       |                                     |                                    | -                              |  |
| 1.5 m X 1.5 m       1137       937         2 m X 2 m       1175       861         2.5 m X 2.5 m       1213       817         3 m X 3 m       1251       788         4 m X 4 m       1327       752         5 m X 5 m       1403       731         Image: Second and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu. Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seising content of the seising con                                                                                                                                                                                                                                                                            | 1.5 m X 1.5 m       1137       937         2 m X 2 m       1175       861         2.5 m X 2.5 m       1213       817         3 m X 3 m       1251       788         4 m X 4 m       1327       752         5 m X 5 m       1403       731         Image: Second and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventur Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic forces is it is recommended to follow the seismic for                                                                                                                                                                                                                                                                            |                 |                         |                                             |                       |                                     |                                    | -                              |  |
| ecommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended to | ecommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventur Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended t |                 |                         |                                             |                       |                                     |                                    | -                              |  |
| 5       2.5 m X 2.5 m       1213       817         3 m X 3 m       1251       788         4 m X 4 m       1327       752         5 m X 5 m       1403       731         Recommendations         1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended t                                                                                                                                                                                                                       | 5       2.5 m X 2.5 m       1213       817         3 m X 3 m       1251       788         4 m X 4 m       1327       752         5 m X 5 m       1403       731         Recommendations         1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended t                                                                                                                                                                                                                       |                 |                         |                                             |                       |                                     |                                    | -                              |  |
| 3 m X 3 m       1251       788         4 m X 4 m       1327       752         5 m X 5 m       1403       731         Recommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.       2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended to follow t                                                                                                                    | 3 m X 3 m       1251       788         4 m X 4 m       1327       752         5 m X 5 m       1403       731         Recommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.       2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended to follow t                                                                                                                    |                 |                         | _                                           |                       |                                     |                                    | -                              |  |
| 4 m X 4 m       1327       752         5 m X 5 m       1403       731         ecommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu. Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seising the sensitive to experience the sensitive to experience the sensitive to experience the sensitive to follow the sensitive to follow the sensitive to experience the sensitive to follow the sensent to follow the sensitive to follow the sensitive t                                                                                         | 4 m X 4 m       1327       752         5 m X 5 m       1403       731         ecommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces                                                                                         |                 |                         | 5                                           |                       |                                     |                                    | 4                              |  |
| Secommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended t | Secommendations       1. Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.         2. As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces; it is recommended t |                 |                         |                                             |                       |                                     |                                    | _                              |  |
| <ol> <li>Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.</li> <li>As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu<br/>Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seising the sensitive to experience very strong earthquake events</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol> <li>Adopt a safe bearing capacity for spread and Mat/Raft foundation at different depths.</li> <li>As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu<br/>Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seisr</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |                         |                                             |                       |                                     |                                    | _                              |  |
| <ol> <li>As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu.<br/>Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seismic forces.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol> <li>As described in the chapter SEISMICITY in this report, Nepal is very sensitive to experience very strong earthquake eventu<br/>Therefore, the Foundation Design Engineer must pay due attention on seismic forces; it is recommended to follow the seisr</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                         |                                             | 5 m X 5 m             | 1403                                | 731                                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci             | ribed in the chapter                        | SEISMICITY in this re | port, Nepal is v                    | very sensitive to                  | experience v                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Recommendations | 2. As desci<br>Therefor | ribed in the chapter<br>e, the Foundation I | SEISMICITY in this re | port, Nepal is v<br>pay due attenti | very sensitive to on on seismic fo | experience v<br>ces; it is rec |  |

| Location                        | Depth of Footing considered for<br>bearing capacity calculation | Based on 65 mm<br>settlement Criteria kN/m <sup>2</sup> |
|---------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|
|                                 | 1                                                               | 229                                                     |
|                                 | 3                                                               | 216                                                     |
|                                 | 4                                                               | 686                                                     |
| T238N (New Damauli-Ratamate     | 6                                                               | 1232                                                    |
| 400 kV D/C TL)                  | 7                                                               | 1016                                                    |
|                                 | 9                                                               | 914                                                     |
|                                 | 10                                                              | 749                                                     |
|                                 | 12                                                              | 432                                                     |
|                                 | 1                                                               | 229                                                     |
|                                 | 3                                                               | 1232                                                    |
|                                 | 4                                                               | 1168                                                    |
| T240N (New Damauli-Ratamate     | 6                                                               | 1232                                                    |
| 400 kV D/C TL)                  | 7                                                               | 1549                                                    |
|                                 | 9                                                               | 1016                                                    |
|                                 | 10                                                              | 1232                                                    |
|                                 | 12                                                              | 1232                                                    |
|                                 | 1                                                               | 140                                                     |
|                                 | 3                                                               | 1232                                                    |
|                                 | 4                                                               | 864                                                     |
| T138N (Ratamate New Heatuda     | 6                                                               | 1232                                                    |
| 400 kV D/C TL)                  | 7                                                               | 749                                                     |
|                                 | 9                                                               | 686                                                     |
|                                 | 10                                                              | 1232                                                    |
|                                 | 12                                                              | 1016                                                    |
|                                 | 1                                                               | 1016                                                    |
|                                 | 3                                                               | 800                                                     |
|                                 | 4                                                               | 1041                                                    |
| T140N (Ratamate New Heatuda     | 6                                                               | 1168                                                    |
| 400 kV D/C TL)                  | 7                                                               | 686                                                     |
|                                 | 9                                                               | 826                                                     |
|                                 | 10                                                              | 635                                                     |
|                                 | 12                                                              | 1143                                                    |
|                                 | 1                                                               | 229                                                     |
|                                 | 3                                                               | 279                                                     |
| T17/1N (Indo Nepal Border - New | 4                                                               | 318                                                     |
| Butwal 400 kV D/C TL)           | 6                                                               | 254                                                     |
|                                 | 7                                                               | 762                                                     |
|                                 | 9                                                               | 699                                                     |

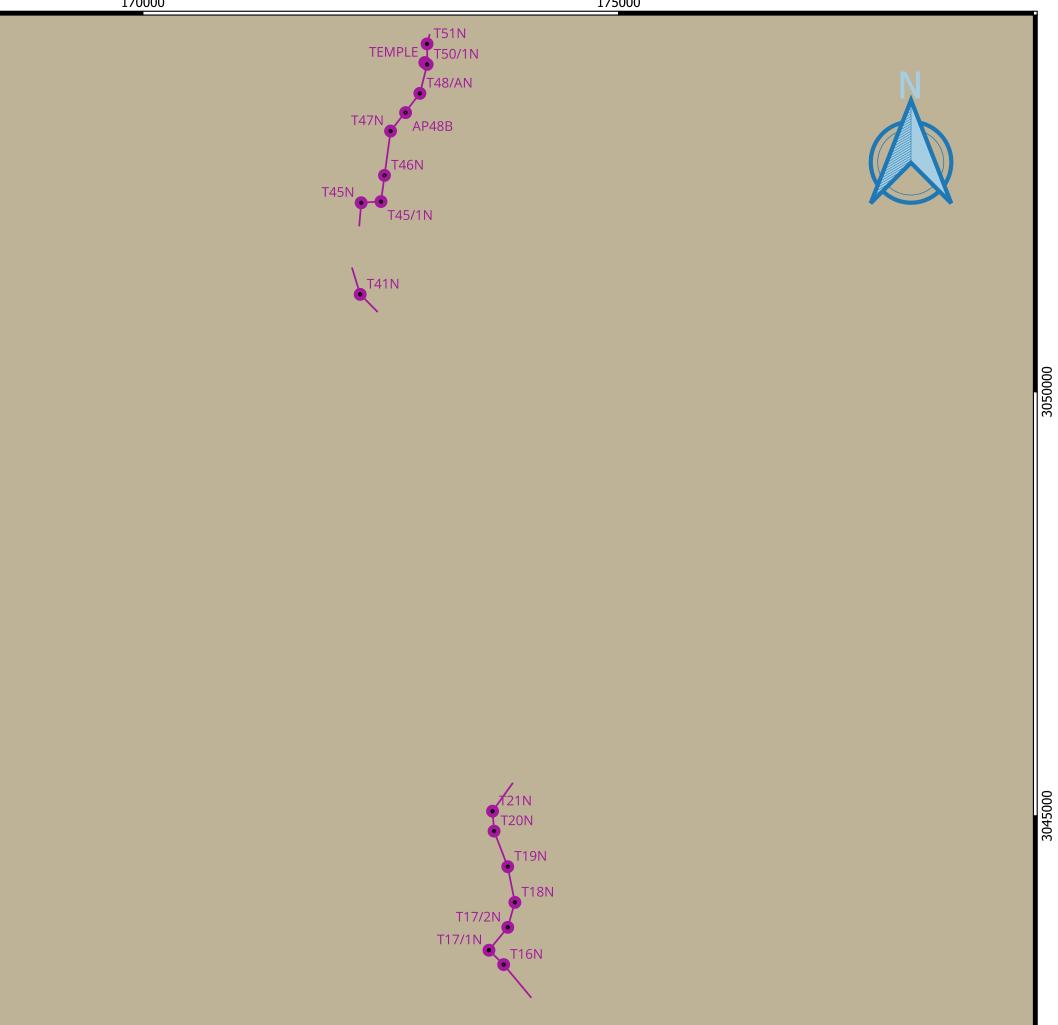

| Location                | Depth of Footing considered for bearing capacity calculation | Based on 65 mm<br>settlement Criteria kN/m <sup>2</sup> |
|-------------------------|--------------------------------------------------------------|---------------------------------------------------------|
|                         | 10                                                           | 889                                                     |
|                         | 12                                                           | 597                                                     |
|                         | 1                                                            | 381                                                     |
|                         | 3                                                            | 508                                                     |
|                         | 4                                                            | 597                                                     |
| TW198 (New Butwal - New | 6                                                            | 1054                                                    |
| Damauli 400 kV D/C TL)  | 7                                                            | 1232                                                    |
|                         | 9                                                            | 1156                                                    |
|                         | 10                                                           | 1016                                                    |
|                         | 12                                                           | 1232                                                    |

### 10 References

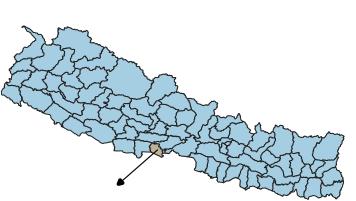
- [1] N. Simons and B. MEnizies, A Short Course In Foundation Engineering, London: Thomas Telford Ltd, 2001.
- [2] J. E. Bowles, Physical and Geotechnical Properties of Soil, New Delhi: McGraw-Hill International Book Company, 1979.
- [3] M. Tomlinson, Foundation Design and Construction, London: Prentice Hall, 2001.
- [4] D. B. Punmia, Soil Mechanics and Foundations, New Delhi: Laxmi Publications (P) Ltd., 2005.
- [5] W. C. Teng, Foundation Design, New Delhi: Prentice-Hall Inc, 1992.
- [6] H. F. Winterkorn and H.-. Y. Fang, Foundation Engineering Handbook, New York: Van Nosrand Reinhold Ltd., 1975.
- [7] R. E. Hunt, Geotechnical Engineering Investigation Handbook, Florida: Taylor & Francis Group, 2005.
- [8] M. R. Dhital, Geology of The Nepal Himalaya, London: Springer, 2015.
- [9] M. Pandey and P. Molnar, "The Distribution of Intensity of The Bihar Nepal Earthquake of 15 January 1934 and Bounds on The Extent of The Rupture Zone," *Nepal Geological Society*, pp. 22-44, 1988.
- [10] A. M. Dixit, "Intensity Distribution of the Udayapur (Nepal) Earthquake of August 20, 1988," Nepal Geological Society, pp. 1-17, 1991.
- [11] B. o. I. Standards, Criteria for Earthquake Resistant Design of Sructures, New Delhi: Bureau of Indian Standards, 2016.
- [12] N. N. B. Code, Seismic Design of Buildings in Nepal (NBC 105:2020), Kathmandu: DUDBC, 2020.
- [13] S. Saran, Analysis and Design of Substructures Limit State Design, New Delhi: Oxford & IBH Publishing Company Pvt. Ltd., 2006.
- [14] B. M. Das, Priniples of Foundation Engineering, Boston: Cengage Learning, 2016.
- [15] N. E. M. a. R. Center, "GoN Department of Mines and Geology," 5 12 2022. [Online]. Available: http://seismonepal.gov.np/publications.

# **APPENDIX-A** Borehole Log and Location Plan

# Districts Showing Borehole Location in Map of Nepal



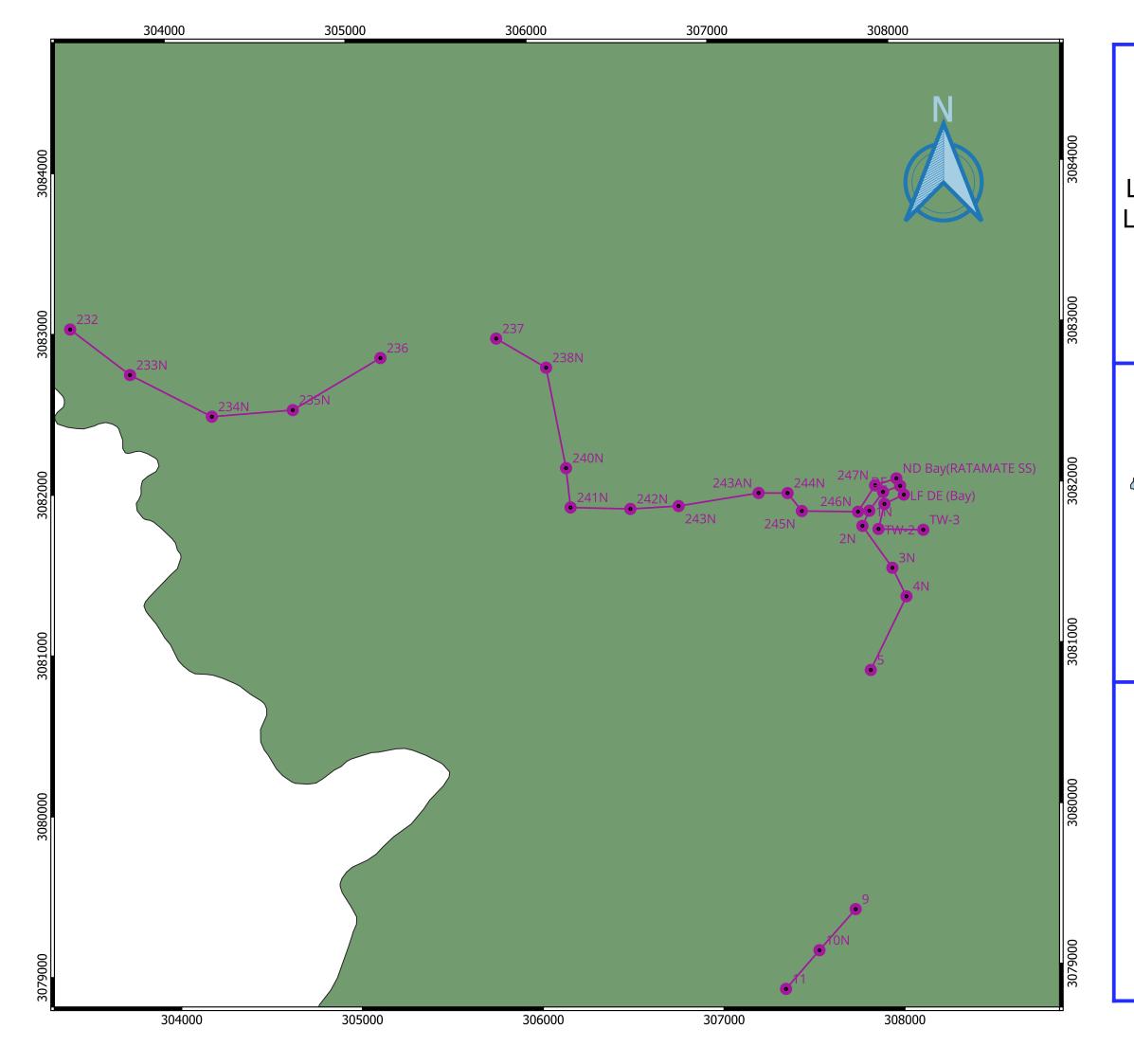




3050000

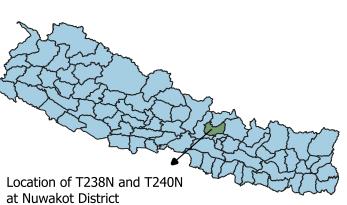
3045000

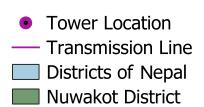





Location Map of Borehole Location and Associated Tower Locations for 30 km of Changes in 400 kV TL Route Alignment



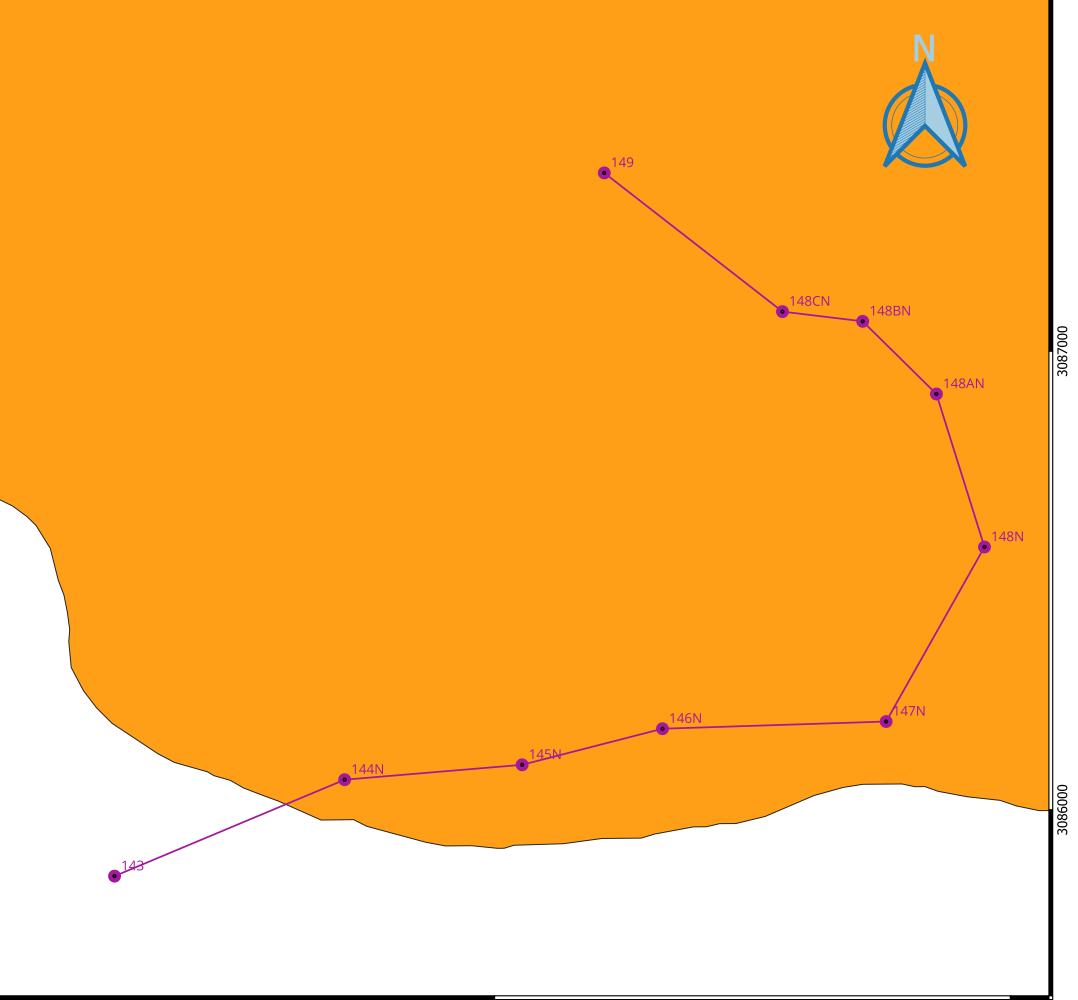

Location of 17/1 at Parasi District


**Changed Portion** 

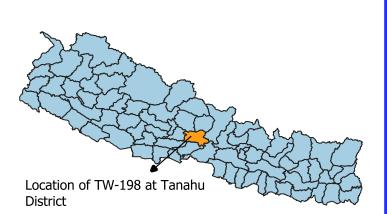
- Tower Locations
- Transmission Line
- Parasi District
- Districts of Nepal



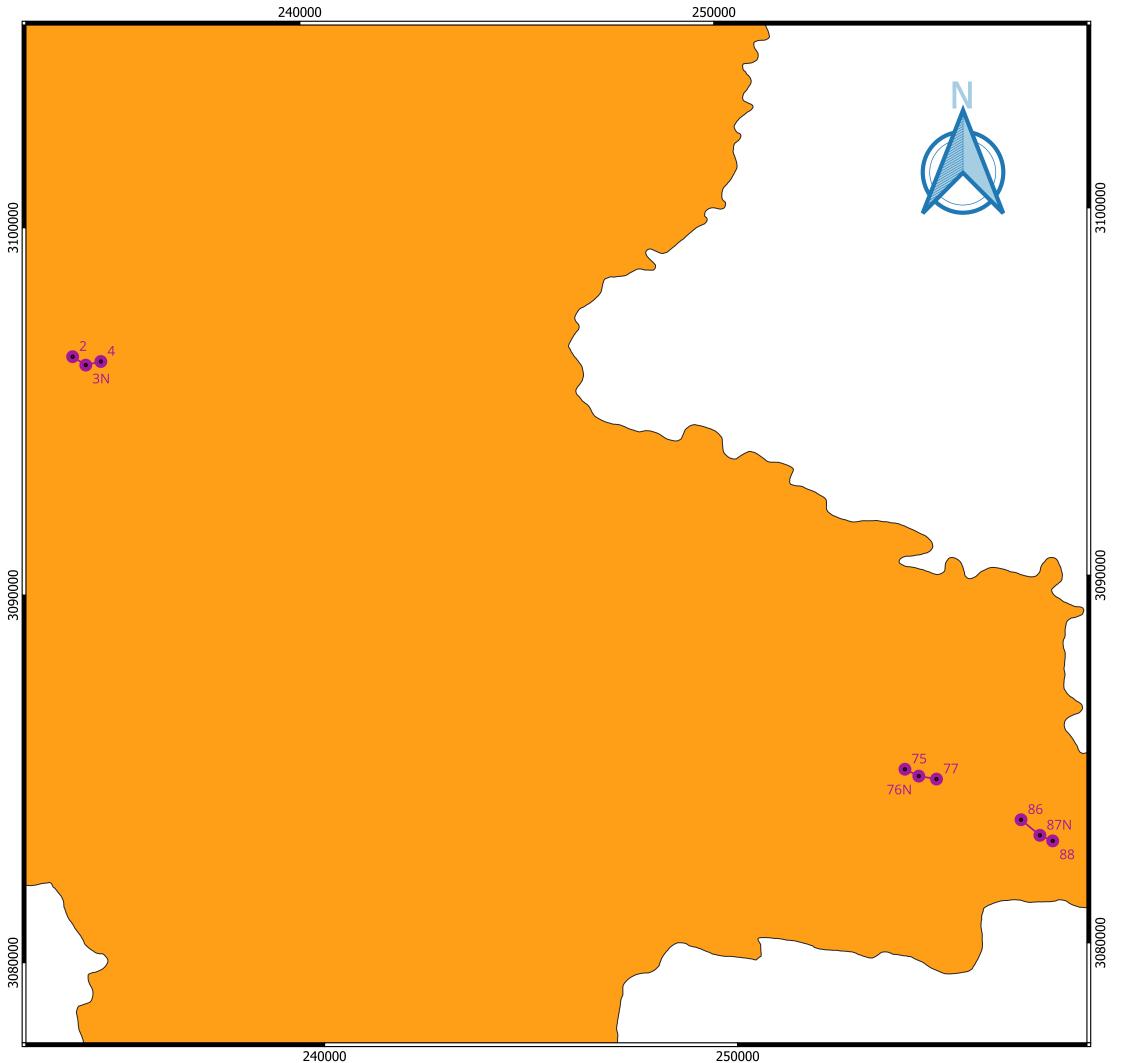
Location Map of Borehole Location and Associated Tower Locations for 30 km of Changes in 400 kV TL Route Alignment



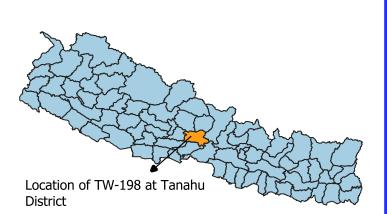


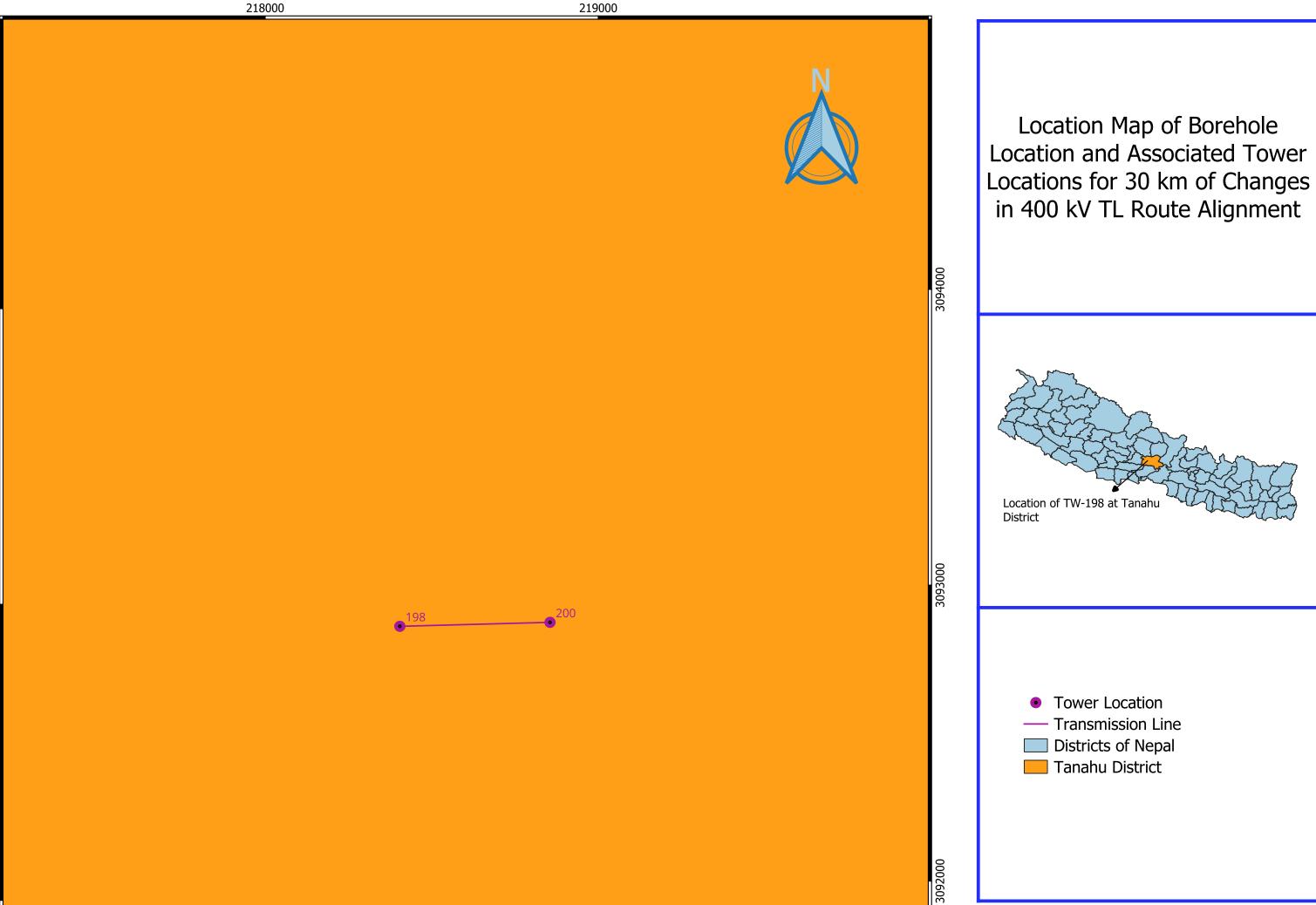


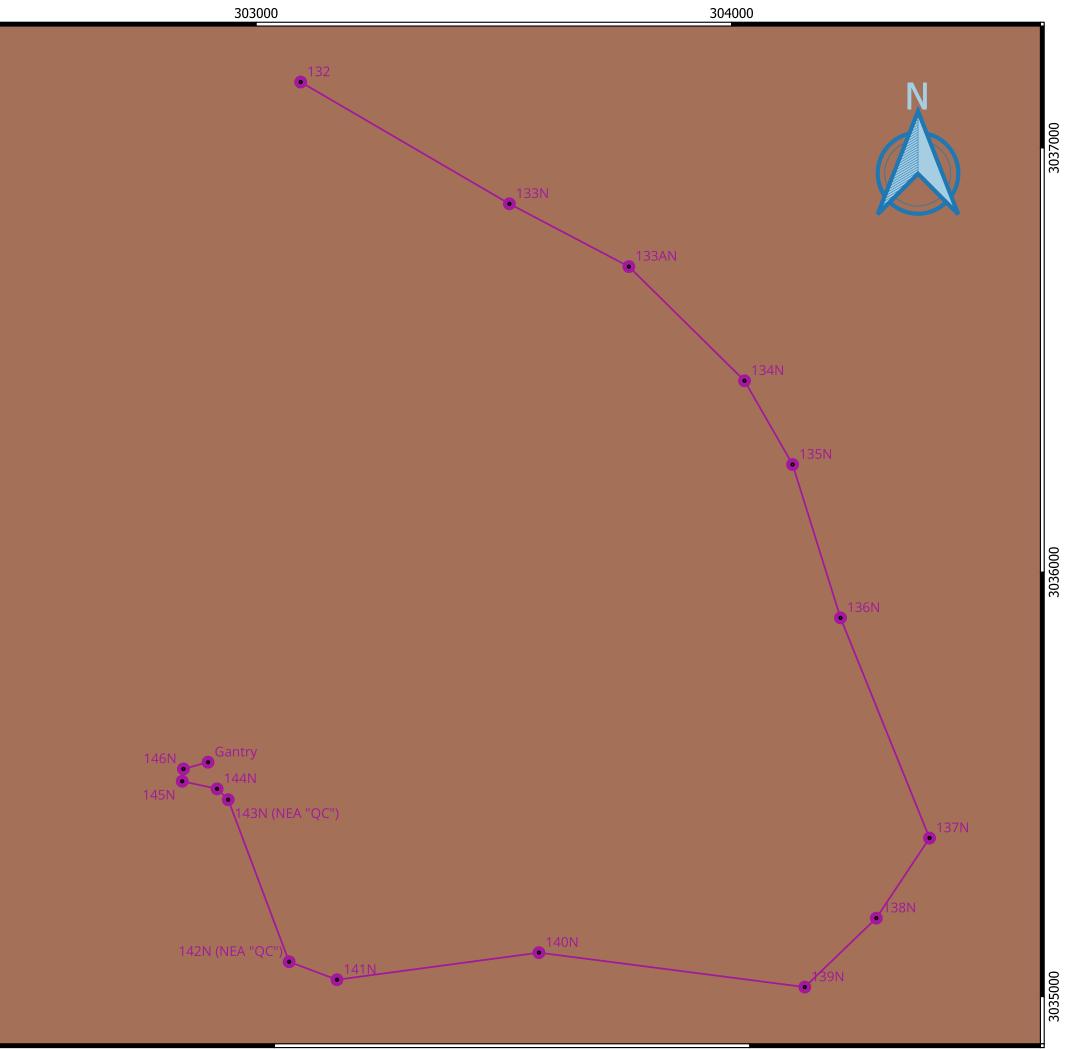


3086000




Location Map of Borehole Location and Associated Tower Locations for 30 km of Changes in 400 kV TL Route Alignment






Location Map of Borehole Location and Associated Tower Locations for 30 km of Changes in 400 kV TL Route Alignment

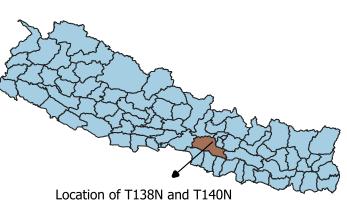




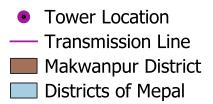




3036000


3037000

3035000


303000

304000

Location Map of Borehole Location and Associated Tower Locations for 30 km of Changes in 400 kV TL Route Alignment



at Makwanpur District



|                                                                                                                                  |                                                                                                                                           |                                                        | Тı                          |                     | Measure<br>Drilling |          | Pvt. Lt        | d.      |                          |               |                                  |        |        |       |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|---------------------|---------------------|----------|----------------|---------|--------------------------|---------------|----------------------------------|--------|--------|-------|
| Project:                                                                                                                         | Soil Investigati<br>Changes in 400                                                                                                        |                                                        |                             | sulting S           | ervices fo          | or Deta  | iled Su        | irvey   | and U                    | pdated Li     | ne Design 1                      | for 30 | km of  |       |
| Location:<br>Client:<br>Borehole No:<br>Dates                                                                                    | New Damauli-<br>MCA-N<br>T238N<br>Started:<br>Finished:                                                                                   | 29/0                                                   | 400 kV<br>99/2079<br>/2079  |                     |                     |          |                |         | Eastin<br>3060           | g (m)         | n Cordinate<br>Northing<br>30827 | g (m)  |        |       |
| Method:<br>Hammer Type:                                                                                                          | SPT and DCPT<br>Monkey Hamm                                                                                                               |                                                        |                             |                     |                     |          |                |         |                          | Water Ta      | ıble :- D                        | ry     |        |       |
| fiummer Type.                                                                                                                    | Wonkey Humin                                                                                                                              |                                                        | -                           | ò                   | N                   | o. of bl | ows            |         | e                        | N-V           | alue S                           | РТ     |        |       |
| Material I                                                                                                                       | Description                                                                                                                               | Symbol                                                 | Depth, m                    | Sample No.<br>&Type | 15/10 cm            | 15/10 cm | 15/10 cm       | N-Value | Ncr-Value                |               | D                                | СРТ    |        |       |
| Gravel; moist,                                                                                                                   | d Sand with<br>brown, fine to<br>ained sand                                                                                               | SW                                                     | - 1<br>- 2                  | ■ SP'               | T 10                | 9        | 12             | 21      |                          |               |                                  |        |        |       |
|                                                                                                                                  |                                                                                                                                           |                                                        | - 3                         | ∎ SP'               | т 9                 | 10       | 10             | 20      |                          |               |                                  |        |        |       |
|                                                                                                                                  |                                                                                                                                           |                                                        | - 4<br>- 5                  | DCI                 | PT                  |          |                |         | 50/15                    |               |                                  |        |        |       |
|                                                                                                                                  |                                                                                                                                           |                                                        | - 6                         | DCI                 | PT                  |          |                |         | 50/3                     |               |                                  |        |        |       |
|                                                                                                                                  | bble mixed Soil<br>Sand                                                                                                                   |                                                        | - 8                         | DCI                 |                     |          |                |         | 50/9                     |               |                                  |        |        |       |
|                                                                                                                                  |                                                                                                                                           |                                                        | - 9<br>- 10<br>- 11<br>- 12 |                     | PT 25               | 25/5     | 50/15          |         | 50/10<br>125/30<br>50/20 | <br> <br>     |                                  |        |        |       |
| End Depth                                                                                                                        |                                                                                                                                           | * C                                                    |                             | ed at 12.           |                     |          |                |         |                          | ind: Dry      |                                  |        |        |       |
| <b>Types of Soil</b>                                                                                                             |                                                                                                                                           |                                                        |                             |                     |                     |          | <u>N V</u>     | alue    |                          |               |                                  |        |        |       |
| Granular Soil                                                                                                                    | Compactness                                                                                                                               |                                                        | <b>04</b>                   |                     | to 10               |          | 10 to          |         |                          | 30 to 50      |                                  |        |        |       |
| Cohesive Soil                                                                                                                    | Consistency                                                                                                                               |                                                        | ry Loos<br>30 2             |                     | Loose 2 to 4        |          | Med. I<br>4 to |         |                          | Dense 8 to 16 | Very Dens<br>16 to 32            |        | > 32   |       |
|                                                                                                                                  | Consistency                                                                                                                               | Ver                                                    | y Soft                      |                     | Soft                |          | Med.           | Soft    |                          | Stiff         | Very Stif                        | f H    | Iard   |       |
| <ol> <li>Boring termi</li> <li>Boring backt</li> <li>Emperical Red</li> <li>Ncr = 1.5 N for</li> <li>Ncr = 1.75 N for</li> </ol> | oring at 20.0 m.<br>nated at selected<br>filled with auger<br>elation Between<br>depths upto 3.0<br>or depths 3.00 m<br>or depths greater | l depth.<br>cuttings u<br>DCPT (No<br>0 m<br>to 6.00 m | pon con<br>cr) and          | mpletion            |                     | m and    | DCPT           | [ was   | condu                    | ucted from    | n 3m to 12 n                     | n.     |        |       |
| where,<br>Ncr = recorded<br>N = SPT values                                                                                       |                                                                                                                                           |                                                        |                             |                     | \<br>\              |          |                |         | Ņ                        | Dif           | on                               |        |        |       |
|                                                                                                                                  |                                                                                                                                           |                                                        |                             | /                   |                     |          |                |         | Go                       | otechnical    | Engineer T                       | raceab | le Mor | acurr |

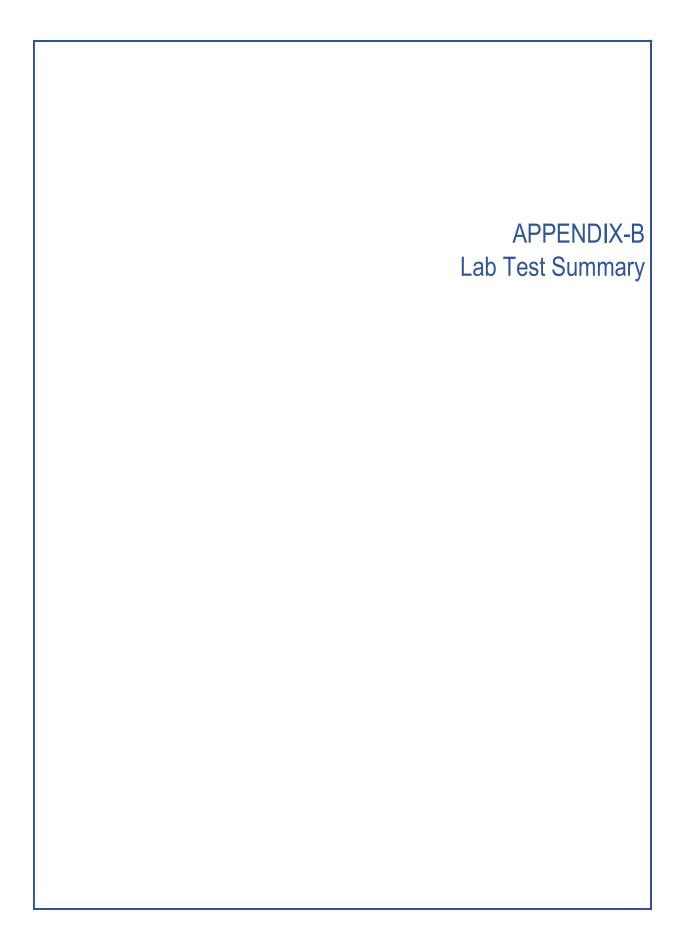
TRACEABLE MEASUREMENTS

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

|                                                                                              |                                                          |                                                       | Tı                           | acea     |              | easurer<br>illing I |          | Pvt. Lt  | d.      |                |            |         |                         |         |   |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------|----------|--------------|---------------------|----------|----------|---------|----------------|------------|---------|-------------------------|---------|---|
| Project:                                                                                     | Soil Investigati<br>Changes in 400                       |                                                       |                              |          | ıg Servi     | ices for            | Detai    | led Su   | rvey a  | and Up         | odated Lin | e Desig | n for 3                 | 0 km of |   |
| Location:<br>Client:<br>Borehole No:<br>Dates                                                | New Damauli-J<br>MCA-N<br>T240N<br>Started:<br>Finished: | 08/0                                                  | 400 kV<br>08/2079<br>08/2079 |          | TL           |                     |          |          |         | Eastin<br>3063 |            | Nort    | ate<br>hing (n<br>82408 | n)      |   |
| Method:<br>Hammer Type:                                                                      | Rotary Boring<br>Monkey Hamm                             |                                                       |                              |          |              |                     |          |          |         |                | Water Ta   | ble :-  | 4.5m                    | l       |   |
|                                                                                              |                                                          | _                                                     | ш                            |          |              | No.                 | of bl    |          | e       | ue             | N-V        | alue    | SPT                     |         |   |
| Material I                                                                                   | Description                                              | Symbol                                                | Depth,                       | Sample 1 | &Type        | 15/10 cm            | 15/10 cm | 15/10 cm | N-Value | Ncr-Value      |            |         | DCP                     | T 🚞     | 3 |
| moist, dark b                                                                                | Sand with Silt;<br>prown, fine to<br>ained sand          | SP-<br>SM                                             | - 1<br>- 2                   |          | SPT          | 10                  | 9        | 12       | 21      |                |            |         |                         |         |   |
|                                                                                              |                                                          |                                                       | - 3                          | I        | DCPT         | 50/10               |          |          |         | 50/10          |            |         |                         |         |   |
|                                                                                              |                                                          |                                                       | - 4<br>- 5                   | I        | DCPT         | 50/9                |          |          |         | 50/9           |            |         |                         |         |   |
|                                                                                              | bble mixed Soil<br>Sand                                  |                                                       | - 6                          | I        | DCPT         | 50/8                |          |          |         | 50/8           |            |         |                         |         |   |
| Will                                                                                         | Sund                                                     |                                                       | - 8                          |          | DCPT         | 50/6                |          |          |         | 50/6           |            |         |                         |         |   |
|                                                                                              |                                                          |                                                       | - 9<br>- 10                  |          | DCPT<br>DCPT | 50/9<br>50/7        |          |          |         | 50/9<br>50/7   |            |         |                         |         |   |
|                                                                                              |                                                          |                                                       | - 11<br>- 12                 |          | DCPT         | 50/5                |          |          |         | 50/5           |            |         |                         |         |   |
| End Depth                                                                                    |                                                          | * C                                                   | omplet                       | ed at    | 12.00r       | n                   |          | NX       | alue    |                | nd: Dry    |         |                         |         | 7 |
| Types of Soil                                                                                |                                                          | 0 1                                                   | to 4                         |          | 4 to         | 10                  |          | 10 to    |         |                | 30 to 50   | > 5     | 50                      |         |   |
| Granular Soil                                                                                | Compactness                                              |                                                       | ry Loos                      | e        | Loo          |                     |          | Med. I   |         | e              | Dense      | Very I  |                         |         |   |
| Cohesive Soil                                                                                | Consistency                                              |                                                       | to 2                         |          | 2 to         |                     |          | 4 to     |         |                | 8 to 16    | 16 to   |                         | > 32    | _ |
| Notes:                                                                                       |                                                          | Ver                                                   | y Soft                       |          | So           | t                   |          | Med.     | Soft    |                | Stiff      | Very    | Stiff                   | Hard    |   |
| 1. Bottom of Bo2. Boring termin3. Boring backf4. Emperical ReNcr = 1.5 N forNcr = 1.75 N for | illed with auger                                         | depth.<br>cuttings up<br>DCPT (No<br>0 m<br>to 6.00 m | pon cor<br>cr) and           | npleti   | ion.         |                     | n and    | DCPT     | was     | condu          | cted from  | 3m to 1 | 2 m.                    |         |   |
| Ncr = recorded<br>N = SPT values                                                             |                                                          |                                                       |                              |          | /            |                     |          | Ν        | N       | ant            | Jo.        |         |                         |         |   |
| 1                                                                                            |                                                          |                                                       |                              |          | /            |                     |          | 1        | F       | 2.             |            |         |                         |         |   |

TRACEABLE MEASUREMENTS

|                                                                                                                               | Traceable Measurement Pvt. Ltd.<br>Drilling Log                                    |                                                       |                                                                                            |                          |                                                              |          |                           |             |                               |                                                               |                                       |                                        |             |                     |   |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------|----------|---------------------------|-------------|-------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------|---------------------|---|
| Project:<br>Location:<br>Client:<br>Borehole No:<br>Dates                                                                     | Soil Investigation<br>Changes in 400<br>Ratamate New<br>MCA-N<br>T138N<br>Started: | kV Transn<br>Heatuda 40<br>09/09                      | nissic<br>00 kV<br>9/207                                                                   | on Li<br>V D/0<br>79     | ting Servi<br>ne Route                                       | ices for | r Detai                   | led Su      | -                             | and Up<br>Easting<br>3042                                     | Position<br>g (m)                     | Cordin<br>Nort                         |             |                     |   |
| Method:<br>Hammer Type:                                                                                                       | Finished:<br>DCPT<br>Monkey Hamm                                                   | 12/0                                                  | 9/207                                                                                      | 79                       |                                                              |          |                           |             |                               |                                                               | Water Ta                              | ıble :-                                | 7.3n        | 1                   |   |
|                                                                                                                               | Description                                                                        | Symbol                                                | Depth, m                                                                                   |                          | Sample No.<br>&Type                                          | 10 cm    | . of blo<br>U<br>10<br>10 | 10 cm       | N-Value                       | Ncr-Value                                                     | N-V                                   | alue                                   | SPT<br>DCF  |                     |   |
| Gravel and Bo                                                                                                                 | ulder with sand                                                                    |                                                       | - 1<br>- 2<br>- 3<br>- 4<br>- 5<br>- 6<br>- 7<br>- 7<br>- 8<br>- 9<br>- 10<br>- 11<br>- 12 |                          | DCPT<br>DCPT<br>DCPT<br>DCPT<br>DCPT<br>DCPT<br>DCPT<br>DCPT | 4        | 11                        | 7           |                               | 22<br>50/9<br>50/12<br>50/6<br>50/12<br>50/13<br>50/7<br>50/9 |                                       |                                        |             |                     |   |
| End Depth                                                                                                                     |                                                                                    | * Co                                                  |                                                                                            | eted                     | at 12.00r                                                    | n        |                           |             |                               |                                                               | d: Dry                                |                                        |             |                     | _ |
| <u>Types of Soil</u>                                                                                                          |                                                                                    |                                                       |                                                                                            |                          |                                                              |          |                           |             | Value                         | 2                                                             |                                       |                                        |             |                     |   |
| Granular Soil<br>Cohesive Soil                                                                                                | Compactness<br>Consistency                                                         | 0 t                                                   | y Loo                                                                                      |                          | 4 to<br>Loos<br>2 to<br>Sof                                  | se<br>4  |                           | Med.<br>4 t | o 30<br>Dens<br>o 8<br>. Soft |                                                               | 30 to 50<br>Dense<br>8 to 16<br>Stiff | > 5<br>Very I<br><b>16 t</b> o<br>Very | Dense<br>32 | > <b>32</b><br>Hard | _ |
| <ol> <li>Boring termi</li> <li>Boring back</li> <li>Emperical R</li> <li>Ncr = 1.5 N for</li> <li>Ncr = 1.75 N for</li> </ol> |                                                                                    | depth.<br>cuttings up<br>DCPT (Nc<br>0 m<br>to 6.00 m | oon co<br>r) and                                                                           | omp <sup>1</sup><br>d SP | letion.                                                      | ues:     |                           | к.<br>'     | eoted                         | art                                                           | Engineer,                             |                                        |             |                     |   |


MSc. Virginia Tech

| Traceable Measurement Pvt. Ltd.<br>Drilling Log                                              |                                                                        |                                                                                                    |               |                                              |          |                 |                        |                    |                                                                      |                                                     |                                |                            |                     |       |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------|----------------------------------------------|----------|-----------------|------------------------|--------------------|----------------------------------------------------------------------|-----------------------------------------------------|--------------------------------|----------------------------|---------------------|-------|
| Project:                                                                                     | Soil Investigatio                                                      |                                                                                                    |               | ting Servi                                   | ices for | Detai           | led Su                 | rvey a             | nd Up                                                                | odated Lir                                          | ne Desi                        | gn for 3                   | 0 km o              | f     |
| Location:<br>Client:<br>Borehole No:<br>Dates                                                | Changes in 400<br>Ratamate New MCA-N<br>T140N<br>Started:<br>Finished: |                                                                                                    | xV D/<br>079  |                                              | Alıgnr   | nent            |                        | I                  | Easting<br>3035                                                      | - · ·                                               | Nort                           | nate<br>thing (n<br>)35120 | h)                  |       |
| Method:<br>Hammer Type:                                                                      | DCPT<br>Monkey Hamm                                                    | er                                                                                                 |               |                                              |          |                 |                        |                    |                                                                      | Water Ta                                            | ble :-                         | Dry                        |                     |       |
|                                                                                              | Description                                                            | Symbol<br>Depth, m                                                                                 |               | Sample No.<br>&Type                          | 10 cm    | of blo<br>10 cm | 10 cm                  | N-Value            | Ncr-Value                                                            | N-V                                                 | alue                           | SPT<br>DCP                 | т                   |       |
| Gravel and Bo                                                                                | oulder with sand                                                       | - 1<br>- 2<br>- 3<br>- 4<br>- 5<br>- 6<br>- 7<br>- 7<br>- 8<br>- 9<br>- 10<br>- 11<br>- 11<br>- 12 |               | DCPT<br>DCPT<br>DCPT<br>DCPT<br>DCPT<br>DCPT |          |                 |                        |                    | 50/12<br>50/15<br>50/10<br>50/13<br>50/13<br>50/11<br>50/14<br>50/14 |                                                     |                                |                            |                     |       |
| End Depth                                                                                    |                                                                        |                                                                                                    |               | at 12.001                                    | m        |                 |                        |                    |                                                                      | nd: Dry                                             |                                |                            |                     | _     |
| <u>Types of Soil</u>                                                                         | 1                                                                      | 0.4.4                                                                                              |               | 4.4                                          | 10       |                 | <u>N V</u><br>10 to    |                    |                                                                      | 20 4- 50                                            |                                | 50 1                       |                     | -     |
| Granular Soil<br>Cohesive Soil                                                               | Compactness<br>Consistency                                             | 0 to 4<br>Very L<br>0 to 2<br>Very So                                                              |               | 4 to<br>Loo<br>2 to<br>Sof                   | se<br>4  |                 | Med. I<br>4 to<br>Med. | Dense<br>8         |                                                                      | <b>30 to 50</b><br>Dense<br><b>8 to 16</b><br>Stiff | > 2<br>Very 1<br>16 to<br>Very | Dense<br>o 32              | > <b>32</b><br>Hard |       |
| 2. Boring termi<br>3. Boring backs<br>4. Emperical Ro<br>Ncr = 1.5 N for<br>Ncr = 1.75 N for |                                                                        | depth.<br>cuttings upon<br>DCPT (Ncr) a<br>) m<br>to 6.00 m                                        | comp<br>nd SP | letion.                                      | ues:     |                 | Ge                     | No<br>D<br>Seotecl | hnical                                                               | Engineer                                            |                                |                            |                     | nents |

|                                                                                             |                                                                                                  | Trac                                                | ceal             | ble                   | Meas                   | sure<br>ling l    | -       | ent ]   | Pvt                   | <b>.</b> Lt | td.                     |                    |        |         |             |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|-----------------------|------------------------|-------------------|---------|---------|-----------------------|-------------|-------------------------|--------------------|--------|---------|-------------|
| Project:<br>Location:<br>Client:<br>Borehole No:<br>Dates                                   | Soil Investigati<br>Changes in 400<br>Indo Nepal Bon<br>MCA-N<br>T17/1N<br>Started:<br>Finished: | 0kV Trans<br>rder - New<br>17/                      | missi            | on Li<br>val 4(<br>79 | ting Servi<br>ne Route | ices for<br>Align | r Deta  | iiled S |                       |             | Positi<br>g (m)         | on Cordin<br>North | ate    |         | of          |
| Method:                                                                                     | Rotary Boring                                                                                    |                                                     |                  |                       |                        |                   |         |         |                       |             | Water ]                 | Fable :-           | 6m     |         |             |
| Hammer Type:                                                                                | Monkey Hamm                                                                                      | ler                                                 |                  |                       | <u>.</u>               | No.               | of bl   | ows     | 0                     |             | N-                      | Value              | SPT    |         |             |
| Material I                                                                                  | Description                                                                                      | Symbol                                              | Depth, m         |                       | Sample No.<br>&Type    | 15 cm             | 15 cm   | 15 cm   | Nc-Value              | N-Value     | 0<br>0 +                | 10 20 30           |        | PT =    | <b>)</b> 80 |
|                                                                                             | wet, grey, fine to<br>ained sand                                                                 | sc                                                  | - 1              |                       | SPT                    | 8                 | 10      | 11      |                       | 21          | 1.5 —                   | +                  |        |         |             |
| Clay; wet, gre                                                                              | l Sand with Fat<br>y, fine to coarse<br>ed sand                                                  | (SP-<br>SC)                                         | - 3              |                       | SPT                    | 10                | 14      | 11      |                       | 25          | 3 —                     |                    |        |         | _           |
|                                                                                             | ed Sand with                                                                                     |                                                     | - 4<br>- 5       |                       | SPT                    | 9                 | 13      | 15      |                       | 28          | 4.5 —                   | +++                |        |         |             |
| Elastic Silt; mo                                                                            | ist, brown, contains<br>arse grained sand                                                        | SP-<br>SM                                           | - 6              |                       | SPT                    | 8                 | 11      | 12      |                       | 23          | 6 —                     |                    |        |         | _           |
|                                                                                             | ed Sand; moist,<br>parse grained sand                                                            | SP                                                  | - 7              |                       | SPT                    | 20                | 28      | 35      |                       | 63          | 7.5 —                   |                    |        |         | _           |
|                                                                                             | ith Gravel; moist,<br>parse grained sand                                                         | SP                                                  | - 8<br>- 9       |                       | SPT                    | 15                | 25      | 33      |                       | 58          | 9 —                     |                    |        |         | _           |
| moist, brown, fin                                                                           | Sand with Clay;<br>e to coarse grained<br>and                                                    | (SP-<br>SC)                                         | - 10<br>- 11     |                       | SPT                    | 22                | 33      | 40      |                       | 73          | 10.5 —                  |                    |        |         |             |
|                                                                                             |                                                                                                  | X                                                   | - 12             |                       | SPT                    | 35                | 50/5    |         |                       | 50          | 12                      |                    |        |         |             |
| End Depth                                                                                   |                                                                                                  | * C                                                 | ompl             | eted                  | at 12.001              | n                 |         |         |                       |             | ınd: Dr                 | y                  |        |         | -           |
| <u>Types of Soil</u>                                                                        | 1                                                                                                | 0                                                   | to 4             |                       | 4 to                   | 10                | 1       |         | <u>Value</u><br>10 30 |             | 30 to 5                 | 0 > 50             | 0      |         | -           |
| Granular Soil                                                                               | Compactness                                                                                      |                                                     | ery Lo           | ose                   | Loo                    |                   |         | Med.    |                       | e           | Dense                   |                    |        |         | _           |
| Cohesive Soil                                                                               | Consistency                                                                                      | 0                                                   | to 2             |                       | 2 to                   | 4                 |         | 4 t     | o 8                   |             | 8 to 16                 | 5 16 to            | 32     | > 32    |             |
| Notes:                                                                                      | ,                                                                                                | Ver                                                 | y Sof            | t                     | So                     | ft                |         | Med     | . Soft                |             | Stiff                   | Very S             | Stiff  | Hard    |             |
| 1. Bottom of Be2. Boring termi3. Boring backf4. Emperical ReNcr = 1.5 N forNcr = 1.75 N for |                                                                                                  | depth.<br>cuttings u<br>DCPT (N<br>0 m<br>to 6.00 m | ipon c<br>cr) an | ompl                  | etion.                 |                   | 2 m.    | \       |                       | 2           |                         | <u> </u>           |        |         |             |
|                                                                                             |                                                                                                  |                                                     |                  |                       | TR                     | ACEABLE ME        | ASUREME | NES     |                       |             | nnical En<br>rginia Teo | gineer, Tra        | ceable | e Measu | iremei      |

|                                                                                                        |                                                                             | ]                             | [ra                   | cea                   | abl  | e Mea<br>Dr         | asur<br>illing |          | ent ]    | Pvt.         | Ltc             | l.            |                                       |       |  |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|-----------------------|-----------------------|------|---------------------|----------------|----------|----------|--------------|-----------------|---------------|---------------------------------------|-------|--|
| Project:                                                                                               | Soil Investigati<br>Changes in 400                                          |                               |                       |                       |      | ting Servi          | ces for        | Detail   | led Su   | rvey and     | l Upd           | ated Line     | Design for 30                         | km of |  |
| Location:<br>Client:<br>Borehole No:                                                                   | New Butwal - I<br>MCA-N<br>TW-198                                           |                               |                       |                       |      |                     | -              |          |          |              | asting<br>2183: | (m)           | n Cordinate<br>Northing (n<br>3092898 | n)    |  |
| Dates                                                                                                  | Started:<br>Finished:                                                       |                               |                       | )9/20′<br>)9/20′      |      |                     |                |          |          |              |                 |               |                                       |       |  |
| Method:<br>Hammer Type:                                                                                | Rotary Boring a Monkey Hamm                                                 |                               | РТ                    |                       |      |                     | 1              |          |          |              |                 | Water Ta      |                                       |       |  |
|                                                                                                        |                                                                             | -                             | z                     | Ξ                     |      | e No.               |                | of blo   |          | - <u>-</u>   | ne              | N-V           |                                       |       |  |
| Material I                                                                                             | Description                                                                 | 0                             | nomike                | Depth, m              |      | Sample No.<br>&Type | 15/10 cm       | 15/10 cm | 15/10 cm | N-Value      | Ncr-Value       |               | DCF                                   |       |  |
|                                                                                                        | I Gravel with                                                               | GW                            |                       | - 1<br>- 2            |      | SPT                 | 10             | 15       | 18       | 33           |                 |               |                                       |       |  |
| , .                                                                                                    | d sand                                                                      | 0.11                          |                       | - 3                   |      | SPT                 | 12             | 18       | 25       | 43           |                 |               |                                       |       |  |
| Well Graded C                                                                                          | Gravel with Silt                                                            | GW                            |                       | - 4<br>- 5            |      | SPT                 | 15             | 15       | 35       | 50           |                 |               |                                       |       |  |
| · · · · ·                                                                                              | st, brown, fine to<br>ained sand                                            | GM                            | <u> </u>              | - 6                   |      | DCPT                | 50/10          |          |          | 50/10        |                 |               |                                       |       |  |
| Sand; moist, bro                                                                                       | l Gravel with<br>wn, fine to coarse<br>d sand                               | GW                            |                       | - 7<br>- 8<br>- 9     |      | DCPT                | 50/5           |          |          | 50/5         |                 |               |                                       |       |  |
| and Sand; moi                                                                                          | Gravel with Silt<br>st, brown, fine to<br>ained sand                        | GW<br>GM                      |                       | - 9<br>- 10           |      | DCPT<br>DCPT        | 50/8<br>50/9   |          |          | 50/8<br>50/9 |                 |               |                                       |       |  |
| and Sand; moi                                                                                          | Gravel with Silt<br>st, brown, fine to<br>ained sand                        | GW                            |                       | - 11<br>- 12          |      | DCPT                | 50/7           |          |          | 50/7         |                 |               |                                       |       |  |
| End Depth                                                                                              |                                                                             |                               | * C                   | ompl                  | eted | at 12.00r           | n              |          |          |              | Grou            | nd: Dry       |                                       |       |  |
| <b>Types of Soil</b>                                                                                   | 1                                                                           |                               |                       |                       |      |                     |                |          |          | Value        |                 |               |                                       |       |  |
| Granular Soil                                                                                          | Compactness                                                                 |                               |                       | to 4                  |      | 4 to                |                |          |          | to 30        |                 | 30 to 50      | > 50                                  |       |  |
| Cohesive Soil                                                                                          | Consistency                                                                 |                               | 0 1                   | ry Lo<br>t <b>o 2</b> |      | Loo<br>2 to         |                |          |          | Dense<br>0 8 |                 | Dense 8 to 16 | Very Dense<br>16 to 32                | > 32  |  |
|                                                                                                        | Consistency                                                                 |                               | Ver                   | y Sof                 | t    | Sof                 | t              |          | Med      | . Soft       |                 | Stiff         | Very Stiff                            | Hard  |  |
| Notes:<br>1. Bottom of Bo<br>2. Boring termin<br>3. Boring backf<br>4. Emperical Ro<br>Ncr = 1.5 N for | nated at selected<br>illed with auger<br>elation Between<br>depths upto 3.0 | depti<br>cuttii<br>DCP<br>0 m | h.<br>ngs uj<br>T (No | pon c<br>cr) an       | ompl | letion.             |                | i m an   | d DCF    | PT was o     | condu           | cted from     | 3m to 12 m.                           |       |  |
| Ncr = 1.75 N fc<br>Ncr = 2.00 N fc<br>Where,<br>Ncr = recorded<br>N = SPT values                       | or depths greater                                                           |                               |                       |                       |      |                     |                |          |          | Ň            | Vor<br>Qi       | for i         |                                       |       |  |

TRACEABLE MEASUREMENTS



### Summary of Laboratory Tests:

|             |                                      |                |                                                  |                            |                     |                 |                     |                               |                 |                   | Shear Strengt                       | h Parameters                      |
|-------------|--------------------------------------|----------------|--------------------------------------------------|----------------------------|---------------------|-----------------|---------------------|-------------------------------|-----------------|-------------------|-------------------------------------|-----------------------------------|
| Borings No. | Sample<br>Depth (m)<br>Elevation (m) | Sample<br>Type | Description of Specimen                          | Natural<br>Mositure<br>(%) | Specific<br>Gravity | Liquid<br>Limit | Plasticity<br>Index | % Passing<br>No. 200<br>Sieve | Percent<br>Sand | Percent<br>Gravel | Effective<br>Friction Angle<br>(φ') | Effective<br>Cohesion<br>(KPa,c') |
| T17/1N      | 0-1.5                                | SS             | Clayey Sand (SC)                                 | 26.9                       | 2.516               | 40              | 22                  | 16                            | 84              | -                 | *14                                 | 10                                |
| T17/1N      | 1.5 - 4.5                            | SS             | Poorly Graded Sand with<br>Fat Clay (SP-SC)      | 25.6                       | 2.47                | 60              | 20                  | 11                            | 89              | -                 | *19                                 | 31                                |
| T17/1N      | 4.5-6.0                              | SS             | Poorly Graded Sand with<br>Elastic Silt (SP-SM)  | 25.4                       | 2.615               | 66              | 32                  | 14                            | 86              | -                 | *19                                 | 33                                |
| T17/1N      | 6.0-7.5                              | SS             | Poorly Graded Sand (SP)                          | 22.3                       | 2.642               | -               | -                   |                               | 100             | -                 | 34                                  | 0                                 |
| T17/1N      | 7.5-9.0                              | SS             | Clayey Sand with Gravel<br>(SC)                  | 20.3                       | 2.678               | -               | -                   | 24                            | 63              | 13                | 24                                  | 23                                |
| T17/1N      | 12.0                                 | SS             | Poorly Graded Sand with<br>Clay (SP-SC)          | 24.2                       | 2.685               | -               | -                   | 8                             | 92              | -                 | 31                                  | 9                                 |
| T240N       | 0-1.5                                | SS             | Poorly GradedSand with<br>Silt (SP-SM)           | 19.4                       | 2.686               | -               | -                   | 12                            | 85              | 2                 | 31                                  | 6                                 |
| T238N       | 0-3.0                                | SS             | Well Graded Sand with<br>Gravel(SW)              | 16.3                       | 2.501               | -               | -                   | 3                             | 73              | 24                | 34                                  | 0                                 |
| TW198       | 0-1.5                                | SS             | Well Graded Gravel with<br>Sand (GW)             | 16.9                       | 2.629               | -               | -                   | 2                             | 29              | 69                | -                                   | -                                 |
| TW198       | 1.5 - 4.5                            | SS             | Well Graded Gravel with<br>Sand (GW)             | 13.7                       | 2.655               | -               | -                   | 2                             | 43              | 55                | -                                   | -                                 |
| TW198       | 4.5-6.0                              | SS             | Well Graded Gravel with<br>Sand and Silt (GW-GM) | 10.7                       | 2.617               | -               | -                   | 5                             | 28              | 67                | -                                   | -                                 |
| TW198       | 6.0-9.0                              | SS             | Well Graded Gravel with<br>Sand (GW)             | 11.8                       | -                   | -               | -                   | 4                             | 35              | 61                | 33                                  | 0                                 |
| TW198       | 10                                   | SS             | Well Graded Gravel with<br>Sand and Silt (GW-GM) | 13.9                       | -                   | -               | -                   | 5                             | 27              | 68.0              | -                                   | -                                 |
| TW198       | 12.0                                 | SS             | Well Graded Gravel with<br>Sand (GW)             | -                          | 2.632               | -               | -                   | 4                             | 24              | 72                | 34                                  | 0                                 |

TRACEABLE MEASUREMENTS

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech Compiled By: Manab Rijal Date: Jan. 10, 2023

Qi

D:\PROJECT\09-MCC-TRANSMISSION-LINE\01-WORK\07-SUMMARY\_LAB DATA

## APPENDIX-C Laboratory Data and Detail Analysis of New Damauli-Ratamate 400 kV D/C TL (T238N)

|                                                                              |                                                                               |                        | Tra                           | ceable Me<br>Dr     | easure<br>illing l |          | Pvt. Lt      | d.      |                 |                         |                                 |           |          |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|-------------------------------|---------------------|--------------------|----------|--------------|---------|-----------------|-------------------------|---------------------------------|-----------|----------|
| Project:                                                                     | Soil Investigati<br>Changes in 400                                            |                        |                               | lting Serv          | ices fo            | r Detai  | iled Su      | rvey    | and U           | pdated Li               | ine Design                      | for 30 km | n of     |
| Location:<br>Client:<br>Borehole No:<br>Dates                                | New Damauli-<br>MCA-N<br>T238N<br>Started:<br>Finished:                       | 29/0                   | 400 kV D<br>09/2079<br>1/2079 | 0/C TL              |                    |          |              |         | Easting<br>3060 | g (m)                   | n Cordinato<br>Northin<br>30827 | g (m)     |          |
| Method:<br>Hammer Type:                                                      | SPT and DCPT<br>Monkey Hamm                                                   |                        |                               |                     |                    |          |              |         |                 | Water Ta                | able :- I                       | Dry       |          |
|                                                                              |                                                                               | _                      | E                             | . v.                | No                 | . of bl  | ows          | e       | ue              | N-V                     |                                 | =         |          |
| Material I                                                                   | Description                                                                   | Symbol                 | Depth, m                      | Sample No.<br>&Type | 15/10 cm           | 15/10 cm | 15/10 cm     | N-Value | Ncr-Value       |                         | 1                               | DCPT      |          |
| Gravel; moist,                                                               | d Sand with<br>brown, fine to<br>ained sand                                   | sw                     | - 1<br>- 2                    | SPT                 | 10                 | 9        | 12           | 21      |                 |                         |                                 |           |          |
|                                                                              |                                                                               |                        | - 3                           | SPT                 | 9                  | 10       | 10           | 20      |                 |                         |                                 |           |          |
|                                                                              |                                                                               |                        | - 4                           | DCPT                |                    |          |              |         | 50/15           |                         |                                 |           |          |
|                                                                              |                                                                               |                        | - 6                           | DCPT                |                    |          |              |         | 50/3            |                         |                                 |           |          |
|                                                                              | bble mixed Soil<br>Sand                                                       |                        | - 8                           | DCPT                |                    |          |              |         | 50/9            |                         |                                 |           |          |
|                                                                              |                                                                               |                        | - 9                           | DCPT                |                    |          |              |         | 50/10           |                         |                                 |           |          |
|                                                                              |                                                                               |                        | - 11                          | DCPT                | 25                 | 25/5     | 50/15        |         | 125/30          |                         |                                 |           |          |
| End Depth                                                                    |                                                                               |                        | - 12                          | DCPT                |                    |          |              |         | 50/20           | nd: Dry                 |                                 |           |          |
| Types of Soil                                                                |                                                                               |                        | ompietet                      | 1 at 12.001         | 11                 |          | N V          | alue    |                 | inu. Di y               |                                 |           |          |
| Granular Soil                                                                | Compactness                                                                   | 0 1                    | to 4                          | 4 to                | 10                 |          | 10 to        |         |                 | 30 to 50                | > 50                            |           |          |
| Granular Soll                                                                | Compactness                                                                   |                        | ry Loose                      |                     |                    |          | Med. I       |         | e               | Dense                   | Very Der                        |           |          |
| Cohesive Soil                                                                | Consistency                                                                   |                        | t <b>o 2</b><br>y Soft        | 2 to<br>Sot         |                    |          | 4 to<br>Med. |         |                 | <b>8 to 16</b><br>Stiff | <b>16 to 3</b><br>Very Sti      |           |          |
| Notes:                                                                       | 1                                                                             |                        | , 501                         |                     |                    | 1        |              | 2011    |                 | 5011                    | , 01 / 511                      | 1 11dl    | <b>∽</b> |
| <ol> <li>Bottom of Bo</li> <li>Boring termi</li> <li>Boring backt</li> </ol> | oring at 20.0 m.<br>nated at selected<br>filled with auger<br>elation Between | l depth.<br>cuttings u | pon com                       | pletion.            |                    | m and    | DCPT         | ' was   | condu           | acted from              | n 3m to 12                      | m.        |          |

- Ncr = 1.5 N for depths upto 3.00 m
- Ncr = 1.75 N for depths 3.00 m to 6.00 m

Ncr = 2.00 N for depths greater than 6.00 m

Where,

Ncr = recorded DCPT values

N = SPT values

Q

TRACEABLE MEASUREMENTS

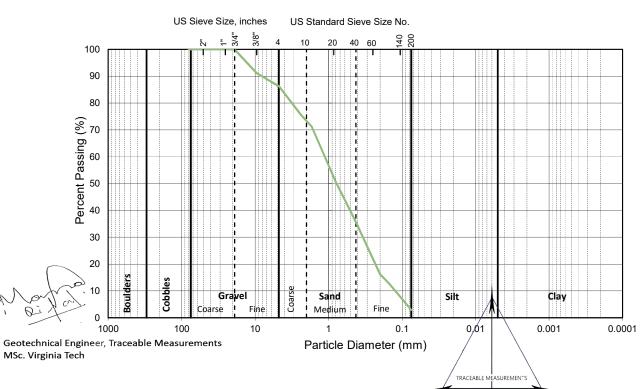
| Traceable Measurements Pvt. Ltd<br>Lalitpur-2, Sanepa, Nepal<br><u>Determination of Moisture Content</u> |             |                    |                        |             |                                |              |            |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|-------------|--------------------|------------------------|-------------|--------------------------------|--------------|------------|--|--|--|--|--|
| Project                                                                                                  | :           |                    |                        |             | & updated lin<br>e Route Aligm |              |            |  |  |  |  |  |
| Location<br>Sample Description                                                                           | :           | T238N<br>SPT Sampl | ۵                      |             |                                |              |            |  |  |  |  |  |
| Bore Hole No                                                                                             | :           | •                  | Date Of S              | ampling     | 29/07/2079                     |              |            |  |  |  |  |  |
| Lab Ref No.                                                                                              | :<br>NATUR/ | AL MOISTU          | Date Of To<br>IRE CONT |             |                                |              |            |  |  |  |  |  |
| Depth m.                                                                                                 |             |                    | 0-3m                   |             |                                |              |            |  |  |  |  |  |
| Container No.                                                                                            |             | 210                | 48                     | 76          |                                |              |            |  |  |  |  |  |
| Weight of Wet Soil + Contain                                                                             | er,g        | 64.2               | 57.4                   | 61.2        |                                |              |            |  |  |  |  |  |
| Weight of Dry Soil + Containe                                                                            | ər,g        | 58.6               | 50.4                   | 53.6        |                                |              |            |  |  |  |  |  |
| Weight of Water, g                                                                                       |             | 5.6                | 7.0                    | 7.6         |                                |              |            |  |  |  |  |  |
| Weight of container, g                                                                                   |             | 13.5               | 11.3                   | 13.0        |                                |              |            |  |  |  |  |  |
| Weight of Dry Soil, g                                                                                    |             | 45.1               | 39.1                   | 40.6        |                                |              |            |  |  |  |  |  |
| Water Content, W %                                                                                       |             | 12.4               | 17.9                   | 18.7        |                                |              |            |  |  |  |  |  |
| Average Water Content, W                                                                                 | 6           |                    | 16.3                   |             |                                |              |            |  |  |  |  |  |
|                                                                                                          | ate d Duu   |                    |                        |             | \/:: <b>f</b>                  | ad Dur       |            |  |  |  |  |  |
| le                                                                                                       | sted By:    | <b>A</b>           |                        |             | verifie                        | ed By:       |            |  |  |  |  |  |
|                                                                                                          |             | TRACEABLE MEASUREM | MENTS                  | Moi<br>i Qì | Jon.                           |              |            |  |  |  |  |  |
|                                                                                                          |             |                    |                        |             | nical Engineer, 1              | raceable Mea | asurements |  |  |  |  |  |
|                                                                                                          |             |                    |                        | MSc. Virg   | ginia Tech                     |              |            |  |  |  |  |  |

| Traceable Measurements Pvt. Ltd<br>Lalitpur-2, Sanepa, Nepal                               |                                                                                                                                           |                    |                          |   |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|---|--|
| TEST FOR SPECIFIC GRAVITY OF SOIL                                                          |                                                                                                                                           |                    |                          |   |  |
| Project<br>:                                                                               | Soil Investigation Works of Services & updated line Design for 30 km of<br>Changes in 400kv Transmission Line Route Aligment of MCA-Nepal |                    |                          |   |  |
| Client Name :                                                                              | MCA-Nepal                                                                                                                                 | SAMPLE LABEL       | SAMPLE LABEL INFORMATION |   |  |
| Location :                                                                                 | T238N                                                                                                                                     |                    |                          |   |  |
| Description of Sample                                                                      | Date of Sampling :                                                                                                                        |                    |                          |   |  |
| Description of Sample<br>100 % pass through 4.75 mm                                        |                                                                                                                                           | Date of Testing :- |                          |   |  |
|                                                                                            |                                                                                                                                           | DH#                | BH01                     |   |  |
| <b>—</b>                                                                                   |                                                                                                                                           | Depth              | 0-3m                     | 1 |  |
| Test No                                                                                    |                                                                                                                                           | 1                  | 2                        |   |  |
| Wt. of Pycnometer, gm (A)                                                                  |                                                                                                                                           | 96.4               | 101.2                    |   |  |
| Wt. of Pycnometer + Sample, gm (B)                                                         |                                                                                                                                           | 116.2              | 121.4                    |   |  |
| Wt. of Pycnometer + Sample + Water, gm (C)<br>Wt. of Pycnometer + Water, gm (D)            |                                                                                                                                           | 220.4              | 224.5<br>212.5           |   |  |
| Specific Gravity = $(B-A)/((D-A)-(C-B))$                                                   |                                                                                                                                           | 2.538              | 2.463                    |   |  |
| Average Value                                                                              |                                                                                                                                           | 2.550              | 2.501                    |   |  |
|                                                                                            | Tested By :                                                                                                                               |                    | Verified By:             |   |  |
|                                                                                            |                                                                                                                                           |                    |                          |   |  |
|                                                                                            |                                                                                                                                           | Note               | Morton                   |   |  |
| TRACEABLE MEASUREMEN'S Geotechnical Engineer, Traceable Measurements<br>MSc. Virginia Tech |                                                                                                                                           |                    |                          |   |  |



#### **Project Information**

| Project information        |              |
|----------------------------|--------------|
| Project Name:              | MCA-Nepal    |
| Project Number:            |              |
| Location:                  | T238N        |
| Sample Information         |              |
| Borehole/Test Pit:         | BH-01        |
| Sample #:                  |              |
| Depth:                     | 0-3m         |
| Sample type:               |              |
| Sampled by:                |              |
| Laboratory Comments/C      | Observations |
| Testing Information        |              |
| Pan ID                     |              |
| Mass of moist soil + pan ( | g)           |
| Mass of dry soil + pan (g) |              |
| Mass of pan (g)            |              |
| Mass of dry soil (g)       | 484.50       |
| Mass of washed soil (g)    |              |
| Mass loss in wash (g)      |              |
| Summary Parameter          |              |
| Coarser than Gravel%       | 0            |
| Gravel%                    | 24           |
| Sand%                      | 73           |
| Fines%                     | 3            |
| D60, mm:                   | 1.13         |
| D30, mm:                   | 0.34         |
| D10, mm:                   | 0.12         |
| Cc:                        | 0.84         |
| Cu:                        | 9.10         |


| Laboratory Informa | ation                           |
|--------------------|---------------------------------|
| Lab Name:          | Traceable Measurement Pvt. Ltd. |
| Tested By:         |                                 |
| Reviewed By:       |                                 |
| Test Date:         |                                 |
| Report Date:       |                                 |

# Preparation Method: Oven Dry Air Dry

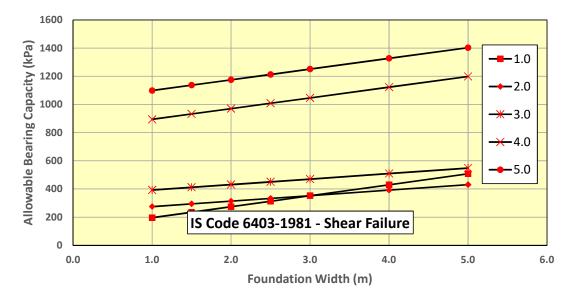
|          |       |        | x     |              |        |
|----------|-------|--------|-------|--------------|--------|
| S.N      | (mm)  | Wt Ret | % Ret | Cum %<br>Ret | % Pass |
| 1        | 80    | 0.00   | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.00   | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.00   | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.00   | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 42.80  | 8.83  | 8.83         | 91.17  |
| 6        | 4.75  | 23.70  | 4.89  | 13.73        | 86.27  |
| 7        | 2.36  | 52.0   | 10.73 | 24.46        | 75.54  |
| 8        | 1.70  | 20.9   | 4.31  | 28.77        | 71.23  |
| 9        | 0.8   | 99.6   | 20.56 | 49.33        | 50.67  |
| 10       | 0.425 | 72.9   | 15.05 | 64.38        | 35.62  |
| 11       | 0.20  | 93.9   | 19.38 | 83.76        | 16.24  |
| 12       | 0.15  | 17.1   | 3.53  | 87.29        | 12.71  |
| 13       | 0.075 | 47.4   | 9.78  | 97.07        | 2.93   |
| Pan      |       | 14.2   |       |              |        |
| Tot Pan  |       | 14.20  | 2.93  | 100.00       | 0.00   |
| Fineness | Mod.  |        |       | 3.61         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

#### Well Graded Sand with Gravel






| Project                     |                                               | :                    | MCA-Nepal                                      |                                         |                   |                                                                         |                      |                                         |                                 |
|-----------------------------|-----------------------------------------------|----------------------|------------------------------------------------|-----------------------------------------|-------------------|-------------------------------------------------------------------------|----------------------|-----------------------------------------|---------------------------------|
| Locatio<br>Bore H<br>Bore H |                                               | :                    | T238N<br>1<br>0-3m                             |                                         |                   |                                                                         | PRG factor:<br>Area: | 0.002312<br>0.0036                      |                                 |
|                             |                                               |                      | Normal Stress (                                | 50kN/m <sup>2</sup> )                   | Normal Stree      | ss (100 kN/m <sup>2</sup> )                                             | Normal Stress (      | $(200 \text{ kN/m}^2)$                  |                                 |
| rea                         | ial Gauge<br>ding (x<br>)1mm)                 | Normal<br>Strain (%) | Load Ring Dial                                 | Shear<br>Stress<br>(KN/m <sup>2</sup> ) | Load Ring<br>Dial | Shear<br>Stress(KN/m <sup>2</sup>                                       | Load Ring Dial       | Shear<br>Stress<br>(KN/m <sup>2</sup> ) | Remar                           |
|                             | 0                                             | 0%                   | 0                                              | 0.00                                    | 0                 | 0.00                                                                    | 0                    | 0.00                                    |                                 |
|                             | 25                                            | 0.4%                 | 21                                             | 13.49                                   | 31                | 19.91                                                                   | 53                   | 34.04                                   |                                 |
|                             | 50                                            | 0.8%                 | 28                                             | 17.98                                   | 47                | 30.18                                                                   | 76                   | 48.81                                   |                                 |
|                             | 75                                            | 1%                   | 32                                             | 20.55                                   | 53                | 34.04                                                                   | 95                   | 61.01                                   |                                 |
|                             | 100<br>125                                    | 1.7%<br>2.1%         | 35<br>39                                       | 22.48<br>25.05                          | 60<br>65          | 38.53<br>41.74                                                          | 110                  | 70.64                                   |                                 |
|                             | 125                                           | 3%                   | 41                                             | 25.03                                   | 71                | 41.74                                                                   | 132                  | 84.77                                   |                                 |
|                             | 175                                           | 2.9%                 | 41 43                                          | 27.62                                   | 75                | 48.17                                                                   | 132                  | 90.55                                   |                                 |
|                             | 200                                           | 3.3%                 | 44                                             | 28.26                                   | 79                | 50.74                                                                   | 143                  | 91.84                                   |                                 |
|                             | 250                                           | 4%                   | 47                                             | 30.18                                   | 86                | 55.23                                                                   | 163                  | 104.68                                  |                                 |
|                             | 300                                           | 5.0%                 | 50                                             | 32.11                                   | 91                | 58.44                                                                   | 176                  | 113.03                                  |                                 |
|                             | 350                                           | 5.8%                 | 52                                             | 33.40                                   | 95                | 61.01                                                                   | 188                  | 120.74                                  |                                 |
|                             | 400                                           | 7%                   | 53                                             | 34.04                                   | 98                | 62.94                                                                   | 195                  | 125.23                                  |                                 |
|                             | 450<br>500                                    | 7.5%<br>8.3%         | 55<br>56                                       | 35.32<br>35.96                          | 101 103           | 64.86<br>66.15                                                          | 200<br>204           | 128.44<br>131.01                        |                                 |
|                             | 550                                           | 9.2%                 | 57                                             | 36.61                                   | 105               | 67.43                                                                   | 204                  | 131.01                                  |                                 |
|                             | 600                                           | 10%                  | 58                                             | 37.25                                   | 107               | 68.72                                                                   | 209                  | 134.22                                  |                                 |
|                             | 700                                           | 11.7%                | 59                                             | 37.89                                   | 109               | 70.00                                                                   | 210                  | 134.87                                  |                                 |
|                             | 800                                           | 13.3%                | 61                                             | 39.18                                   |                   |                                                                         | 212                  | 136.15                                  |                                 |
|                             | 900                                           | 15%                  | 62                                             | 39.82                                   |                   |                                                                         | 216                  | 138.72                                  |                                 |
|                             | 1000<br>1100                                  | 16.7%<br>18.3%       | 60                                             | 38.53                                   |                   |                                                                         | 221<br>225           | 141.93<br>144.50                        |                                 |
|                             | 1200                                          | 20%                  |                                                |                                         |                   |                                                                         | 223                  | 144.30                                  |                                 |
|                             | 1300                                          | 21.7%                |                                                |                                         |                   |                                                                         | 227                  | 1.0.70                                  |                                 |
|                             | 1400                                          | 23.3%                |                                                |                                         |                   |                                                                         |                      |                                         |                                 |
|                             | 1500                                          | 25%                  |                                                |                                         |                   |                                                                         |                      |                                         |                                 |
|                             | 1600                                          | 26.7%                |                                                |                                         |                   |                                                                         |                      |                                         |                                 |
| Shear stress (kPa)          | 200.0<br>150.0<br>100.0<br>50.0<br>0.0<br>0.0 | 50.0                 | <b>0</b><br>100.0 150.0 1<br>Normal stress (kl | 200.0 25                                | 0.0 300.0         | 160<br>140<br>120<br>80<br>80<br>80<br>80<br>80<br>80<br>90<br>90<br>90 |                      | 6.0 8.0 1<br>splacement (               | -50 kPa<br>-100 kPa<br>-200 kPa |
| Shear stress (kPa)          | 160.00<br>140.00<br>120.00<br>100.00          |                      |                                                |                                         | 50 kPa<br>        | a                                                                       |                      |                                         |                                 |
| stre                        | 80.00                                         |                      |                                                |                                         |                   | a                                                                       | φ'<br>c'             | 34                                      | Degre<br>kN/m                   |
| ear                         | 60.00                                         |                      |                                                |                                         |                   |                                                                         | C C                  | 0.00                                    | KIN/II                          |
| Sh                          | 40.00                                         |                      |                                                |                                         |                   |                                                                         |                      |                                         |                                 |
|                             | 20.00                                         |                      |                                                |                                         |                   |                                                                         |                      |                                         |                                 |
|                             | 0.00                                          | % 3%                 | 6% 9%                                          | 12%                                     | 5% 18%            | 21%                                                                     |                      |                                         |                                 |
|                             | 0                                             |                      | Strain                                         |                                         |                   |                                                                         |                      |                                         |                                 |
| ON T                        |                                               | e Measureme          | մահո                                           | tl                                      | ATERIAL TES       |                                                                         | TORY                 | ĺ.                                      |                                 |

This calculation based on the IS:6403-1981. The allowable bearing capacity is based on the shear failure of soil. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

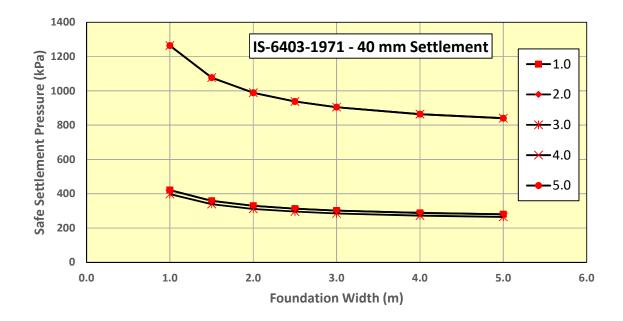
| <u>Bore Hole No T238N</u>                        |       |       |       |       |       |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Depth of Foundation, $D_f(m)$                    | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |
| Friction angle                                   | 31    | 31    | 31    | 35    | 35    |
| SPT N Value                                      | 21    | 21    | 20    | 57    | 57    |
| Unit wt. of soil, kN/m <sup>3</sup>              | 18    | 18    | 18    | 19    | 19    |
| Buoyant Unit wt. of soil. kN/m <sup>3</sup>      | 8     | 8     | 8     | 9     | 9     |
| Cohesion. kN/m <sup>2</sup>                      | 0     | 0     | 0     | 0     | 0     |
| Water Reduction Factor $W_{\boldsymbol{\gamma}}$ | 1     | 0.5   | 0.5   | 0.5   | 0.5   |
| Nq                                               | 20.63 | 20.63 | 20.63 | 33.30 | 33.30 |
| N <sub>c</sub>                                   | 32.67 | 32.67 | 32.67 | 46.12 | 46.12 |
| N <sub>v</sub>                                   | 25.99 | 25.99 | 25.99 | 48.03 | 48.03 |

#### New Damauli-Ratamate 400 kV D/C TL

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS: 6403-1981 Shear |     |           |      |      |  |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------|-----|-----------|------|------|--|--|--|--|--|
|                                         |                                                               |     | Failure ) |      |      |  |  |  |  |  |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                           | 2.0 | 3.0       | 4.0  | 5.0  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                               |     |           |      |      |  |  |  |  |  |
| 1.0                                     | 196                                                           | 275 | 392       | 894  | 1099 |  |  |  |  |  |
| 1.5                                     | 235                                                           | 294 | 412       | 932  | 1137 |  |  |  |  |  |
| 2.0                                     | 274                                                           | 314 | 431       | 970  | 1175 |  |  |  |  |  |
| 2.5                                     | 313                                                           | 333 | 451       | 1008 | 1213 |  |  |  |  |  |
| 3.0                                     | 352                                                           | 353 | 470       | 1046 | 1251 |  |  |  |  |  |
| 4.0                                     | 430                                                           | 392 | 509       | 1122 | 1327 |  |  |  |  |  |
| 5.0                                     | 508                                                           | 431 | 548       | 1198 | 1403 |  |  |  |  |  |

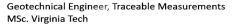


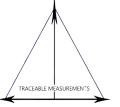
Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion. Please refer to bearing capacity evaluated based on settlement criterion.




This calculation based on the IS:6403-1971. The allowable bearing capacity is based on the settlement of 40 mm. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

| <u>Bore Hole No T238N</u>               |     |     |     |     |     |
|-----------------------------------------|-----|-----|-----|-----|-----|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 |
| Friction angle                          | 31  | 31  | 31  | 35  | 35  |
| SPT N Value                             | 21  | 21  | 20  | 57  | 57  |
| Unit wt of soil kN/m3                   | 18  | 19  | 19  | 19  | 19  |
| Water Reduction Factor Wy               | 1   | 0.5 | 0.5 | 0.5 | 0.5 |


### <u>New Damauli-Ratamate 400 kV D/C TL</u>

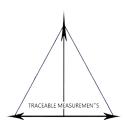

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS:6403-1971-40 mm<br>Settlement) |     |     |      |      |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------|-----|-----|------|------|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                         | 2.0 | 3.0 | 4.0  | 5.0  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                             |     |     |      |      |  |  |  |  |  |
| 1.0                                     | 421                                                                         | 421 | 398 | 1264 | 1264 |  |  |  |  |  |
| 1.5                                     | 359                                                                         | 359 | 339 | 1077 | 1077 |  |  |  |  |  |
| 2.0                                     | 330                                                                         | 330 | 311 | 989  | 989  |  |  |  |  |  |
| 2.5                                     | 313                                                                         | 313 | 295 | 938  | 938  |  |  |  |  |  |
| 3.0                                     | 302                                                                         | 302 | 285 | 905  | 905  |  |  |  |  |  |
| 4.0                                     | 288                                                                         | 288 | 272 | 864  | 864  |  |  |  |  |  |
| 5.0                                     | 280                                                                         | 280 | 265 | 840  | 840  |  |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion.








This calculation is based on the SPT N-value.

#### Bore Hole No. - T238N

# Safe Settlement Bearing Pressure kN/m<sup>2</sup> (IS:6403-65 mm Settlement)

| Depth of Foundation, D <sub>f</sub> (m)                | 1     | 3     | 4     | 6     | 7     | 9     | 10    | 12    |
|--------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| SPT N Value                                            | 21    | 20    | 57    | 100   | 83    | 75    | 62    | 37    |
| Unit wt of soil kN/m3                                  | 18    | 18    | 19    | 19    | 19    | 19    | 19    | 19    |
| Water Reduction Factor Wy                              | 1     | 1     | 1     | 1     | 1     | 1     | 1     | 1     |
|                                                        |       |       |       | -     |       |       |       |       |
| Depth of Foundation, D <sub>f</sub> (m)                | 1.0   | 3.0   | 4.0   | 6.0   | 7.0   | 9.0   | 10.0  | 12.0  |
| Safe Settlement Bearing<br>Pressure, kN/m <sup>2</sup> | 229   | 216   | 686   | 1232  | 1016  | 914   | 749   | 432   |
|                                                        |       |       |       |       |       |       |       |       |
| Modulus of Subgrade Reaction,                          | 18288 | 17272 | 54864 | 98552 | 81280 | 73152 | 59944 | 34544 |
| Ks (kN/m <sup>3</sup> )                                | 10200 | 1/2/2 | 54604 | 96332 | 01200 | 75152 | 33344 | 54544 |





Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

Prepared By: Manab Rijal

#### Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal

| New Da | mauli-Rata         | mate 400 k                       | V D/C TL |         | Borehole -                      | T238N   |       |      |                |       |      |        |                     |                     |                     |       |                |    |
|--------|--------------------|----------------------------------|----------|---------|---------------------------------|---------|-------|------|----------------|-------|------|--------|---------------------|---------------------|---------------------|-------|----------------|----|
| De     | pth to GW          | NE                               | m        |         |                                 |         | Input |      |                |       |      |        |                     |                     |                     |       |                |    |
|        | PGA                | 0.3                              | g        |         | NE: Water Table not Encountered |         |       |      |                |       |      |        |                     |                     |                     |       |                |    |
|        | Mw                 | 7.8                              | 1        |         |                                 |         |       |      |                |       |      |        |                     |                     |                     |       |                |    |
|        | Pa                 | 101.3                            | kPA      |         |                                 |         |       |      |                |       |      |        |                     |                     |                     |       |                |    |
|        |                    |                                  | 1        |         |                                 |         |       |      |                |       |      |        |                     |                     |                     |       |                |    |
| Depth  | N <sub>field</sub> | Total unit<br>wt. γ <sub>t</sub> | Fines    | σ       | u                               | σ'      | α(z)  | β(z) | r              | MSF   | N    | ΔN1,60 | N <sub>1,60cs</sub> | CSR <sub>M7.5</sub> | CRR <sub>M7.5</sub> | Cσ    | k              | FS |
| (m)    | I∿field            | (KN/m <sup>3</sup> )             | content  | (kN/m²) | (kN/m²)                         | (kN/m²) | u(2)  | P(2) | r <sub>d</sub> | IVISE | 1,60 | ΔΝ1,00 | <b>№</b> 1,60cs     | C3N <sub>M7.5</sub> | CNN <sub>M7.5</sub> | Cσ    | k <sub>σ</sub> | гэ |
| 1.0    | 21                 | 18.0                             | 3        | 18      | 0                               | 18      | -0.03 | 0.00 | 1.00           | 0.92  | 30   | 0.00   | 30                  | 0.21                | 0.46                | 0.20  | 1.10           | NL |
| 3.0    | 20                 | 18.0                             | 3        | 54      | 0                               | 54      | -0.13 | 0.02 | 0.99           | 0.92  | 22   | 0.00   | 22                  | 0.21                | 0.23                | 0.14  | 1.09           | NL |
| 4.0    | 57                 | 19.0                             | 3        | 73      | 0                               | 73      | -0.20 | 0.02 | 0.98           | 0.92  | 52   | 0.00   | 52                  | 0.21                | 0.60                | 0.30  | 1.10           | NL |
| 6.0    | 100                | 19.0                             | 3        | 111     | 0                               | 111     | -0.34 | 0.04 | 0.96           | 0.92  | 81   | 0.00   | 81                  | 0.20                | 0.60                | -0.25 | 1.02           | NL |
| 7.0    | 83                 | 19.0                             | 3        | 130     | 0                               | 130     | -0.42 | 0.05 | 0.95           | 0.92  | 65   | 0.00   | 65                  | 0.20                | 0.60                | -0.62 | 1.10           | NL |
| 9.0    | 75                 | 19.0                             | 3        | 168     | 0                               | 168     | -0.59 | 0.07 | 0.93           | 0.92  | 54   | 0.00   | 54                  | 0.20                | 0.60                | 0.30  | 0.85           | NL |
| 10.0   | 63                 | 19.0                             | 3        | 187     | 0                               | 187     | -0.68 | 0.08 | 0.92           | 0.92  | 44   | 0.00   | 44                  | 0.19                | 0.60                | 0.30  | 0.82           | NL |

Notes: 1) If above the water table, not subject to liquefaction

2) Fines content > 35%; Liquid Limit (LL) > 35%; and natural moisture content within 90% of the LL (i.e., 'Chinese Criteria'), not subject to liquefaction

3) Cyclical Resistance Ratio (CRR) equal to or greater than 0.5, not subject to liquefaction.

4) Clean sand  $(N1)_{60}$  equivalent equal to or greater than 34, not subject to liquefaction.

5) Fines content 50% or greater, not subject to liquefaction.

6) NL = Non-Liquefiable.

7) FS<1 indicates liquifiable soils.

TRACEABLE MEASUREMENTS

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

APPENDIX-D Laboratory Data and Detail Analysis of New Damauli-Ratamate 400 kV D/C TL (T240N)

|                                                                                     |                                                                                                                                                                                                                                   |                       | 1                      | Гrac  | eable Me<br>Dr | easurer<br>illing I |       | Pvt. Lt      | d.     |              |                  |                        |                     |   |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|-------|----------------|---------------------|-------|--------------|--------|--------------|------------------|------------------------|---------------------|---|
| Project:                                                                            | Soil Investigati<br>Changes in 400                                                                                                                                                                                                |                       |                        |       | ting Servi     | ices for            | Detai | led Su       | rvey a | and Up       | dated Lin        | e Design for 3         | 0 km of             |   |
| Location:<br>Client:<br>Borehole No:<br>Dates                                       | Location:New Damauli-Ratamate 400 kV D/C TLPosition CordinateClient:MCA-NEasting (m)Borehole No:T240N3063173082408                                                                                                                |                       |                        |       |                |                     |       |              |        |              |                  |                        |                     |   |
| Method:<br>Hammer Type:                                                             | Rotary Boring<br>Monkey Hamm                                                                                                                                                                                                      |                       |                        |       |                |                     |       |              |        |              | Water Ta         |                        | 1                   |   |
|                                                                                     |                                                                                                                                                                                                                                   | -                     | ш                      |       | 9              | -                   | of bl |              | e      | au           | N-V              | alue SPT               |                     |   |
| Material I                                                                          | Material Description     m     No. of blows     No. of blows       Material Description     0     0     0     0       N-Value     0     0     0     0       N-Value     0     0     0     0       N-Value     0     0     0     0 |                       |                        |       |                |                     |       |              |        |              |                  | 1                      |                     |   |
| moist, dark b                                                                       | Sand with Silt;<br>prown, fine to<br>nined sand                                                                                                                                                                                   | SP-<br>SM             | - 1<br>- 2             |       |                | 10                  | 9     | 12           | 21     |              |                  |                        |                     |   |
|                                                                                     |                                                                                                                                                                                                                                   |                       |                        |       | DCPT           | 50/10               |       |              |        | 50/10        |                  |                        |                     |   |
|                                                                                     |                                                                                                                                                                                                                                   |                       | - 4<br>- 5             |       | DCPT           | 50/9                |       |              |        | 50/9         |                  |                        |                     |   |
|                                                                                     | oble mixed Soil<br>Sand                                                                                                                                                                                                           |                       | - 6<br>- 7             |       | DCPT           | 50/8                |       |              |        | 50/8         |                  |                        |                     |   |
|                                                                                     |                                                                                                                                                                                                                                   |                       | - 8                    |       | DCPT<br>DCPT   | 50/6<br>50/9        |       |              |        | 50/6<br>50/9 |                  |                        |                     |   |
|                                                                                     |                                                                                                                                                                                                                                   |                       | - 10<br>- 11<br>- 12   |       | DCPT           | 50/7                |       |              |        | 50/7         |                  |                        |                     |   |
| End Depth                                                                           |                                                                                                                                                                                                                                   | * C                   |                        | eted  | at 12.00       |                     |       |              |        |              | nd: Dry          |                        |                     |   |
| Types of Soil                                                                       |                                                                                                                                                                                                                                   |                       |                        | ····u |                |                     |       | N V          | alue   |              | liuv Dry         |                        |                     | 1 |
| Granular Soil                                                                       | Compactness                                                                                                                                                                                                                       | 0 1                   | io 4                   |       | 4 to           | 10                  |       | 10 to        |        |              | 30 to 50         | > 50                   |                     |   |
|                                                                                     | compactices                                                                                                                                                                                                                       |                       | ry Lo                  | ose   | Loo            |                     |       | Med. I       |        | 9            | Dense            | Very Dense             |                     | 4 |
| Cohesive Soil                                                                       | Consistency                                                                                                                                                                                                                       |                       | t <b>o 2</b><br>y Soft |       | 2 to<br>Sot    |                     |       | 4 to<br>Med. |        |              | 8 to 16<br>Stiff | 16 to 32<br>Very Stiff | > <b>32</b><br>Hard |   |
| Notes:<br>1. Bottom of Bo<br>2. Boring termin<br>3. Boring backf<br>4. Emperical Re | illed with auger                                                                                                                                                                                                                  | depth.<br>cuttings uj | oon co                 | omp   | letion.        |                     | n and | DCPT         | was    | conduc       | cted from        | 3m to 12 m.            |                     | • |
|                                                                                     | or depths 3.00 m                                                                                                                                                                                                                  | to 6.00 m             |                        |       |                |                     |       |              |        |              |                  |                        |                     |   |
| Where,<br>Ncr = recorded                                                            |                                                                                                                                                                                                                                   | than 6.00             | m                      |       |                |                     | Λ     |              |        | Ň            | Nort             | cont.                  |                     |   |
| N = SPT values                                                                      | ;<br>                                                                                                                                                                                                                             |                       |                        |       |                |                     | /     |              | \<br>\ | 1            | Q.               |                        |                     |   |

TRACEABLE MEASUREMENTS

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

|                                               | Traceable M      | <b>Neasur</b> | ements    | Pvt. Lt     | d              |                               |             |  |  |  |  |  |
|-----------------------------------------------|------------------|---------------|-----------|-------------|----------------|-------------------------------|-------------|--|--|--|--|--|
|                                               | Lalitp           | our-2, San    | epa, Nep  | al          | -              |                               |             |  |  |  |  |  |
|                                               | <u>Determina</u> | ation of M    | oisture C | ontent      |                |                               |             |  |  |  |  |  |
| Project                                       | :                |               |           |             |                | ine Design for<br>ment of MCA |             |  |  |  |  |  |
| Location                                      | :                | T240N         |           |             |                |                               |             |  |  |  |  |  |
| Sample Description                            | :                | SPT Sampl     | le        |             |                |                               |             |  |  |  |  |  |
| Bore Hole No     :     1     Date Of Sampling |                  |               |           |             |                |                               |             |  |  |  |  |  |
| Lab Ref No. : Date Of Test                    |                  |               |           |             |                |                               |             |  |  |  |  |  |
|                                               | NATURA           | AL MOISTU     | JRE CONT  | ENT         |                |                               |             |  |  |  |  |  |
|                                               |                  |               |           |             |                |                               |             |  |  |  |  |  |
| Depth m.                                      |                  |               | 0-1.5m    |             |                | -                             | -           |  |  |  |  |  |
| Container No.                                 |                  | 15            | 50        | 48          |                |                               |             |  |  |  |  |  |
| Weight of Wet Soil + C                        | ontainer,g       | 52.2          | 47.1      | 59.6        |                |                               |             |  |  |  |  |  |
| Weight of Dry Soil + Co                       | ontainer,g       | 45.9          | 41.9      | 51.7        |                |                               |             |  |  |  |  |  |
| Weight of Water,                              | g                | 6.3           | 5.2       | 7.9         |                |                               |             |  |  |  |  |  |
| Weight of container,                          | g                | 14.4          | 13.9      | 11.5        |                |                               |             |  |  |  |  |  |
| Weight of Dry Soil,                           | g                | 31.5          | 28.0      | 40.2        |                |                               |             |  |  |  |  |  |
| Water Content, W                              | %                | 20.0          | 18.6      | 19.7        |                |                               |             |  |  |  |  |  |
| Average Water Content                         | t, W %           |               | 19.4      |             |                |                               | •           |  |  |  |  |  |
|                                               |                  |               |           |             |                |                               |             |  |  |  |  |  |
|                                               | Tested By:       |               |           |             | Veri           | fied By:                      |             |  |  |  |  |  |
|                                               | TRACLABLE MEA    |               |           | No.<br>· Di | Jon.           |                               |             |  |  |  |  |  |
|                                               |                  |               |           | Geotechr    | ical Engineer. | Traceable Mea                 | surements   |  |  |  |  |  |
|                                               |                  |               |           | MSo Virg    |                |                               | ou. entento |  |  |  |  |  |

MSc. Virginia Tech

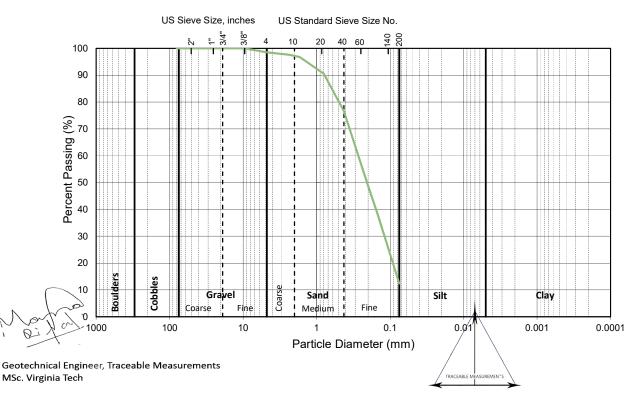
|                  |                                   | Traceable Measurem<br>Lalitpur-2, Sanepa |                    | d            |   |  |  |  |  |  |  |  |  |  |
|------------------|-----------------------------------|------------------------------------------|--------------------|--------------|---|--|--|--|--|--|--|--|--|--|
|                  | TEST FOR SPECIFIC GRAVITY OF SOIL |                                          |                    |              |   |  |  |  |  |  |  |  |  |  |
| Project          | :                                 | MCA-Nepal                                |                    |              |   |  |  |  |  |  |  |  |  |  |
| Client Name      | :                                 | Nepal Electricity Authority (NEA), Nepal | SAMPLE LABEL       | INFORMATION  | _ |  |  |  |  |  |  |  |  |  |
| Location         | :                                 | T240N                                    |                    |              |   |  |  |  |  |  |  |  |  |  |
|                  |                                   |                                          | Date of Sampling   | :            |   |  |  |  |  |  |  |  |  |  |
| Description of S | •                                 |                                          | Date of Testing :- |              |   |  |  |  |  |  |  |  |  |  |
| 100 % pass thro  | ough 4.7                          | 75 mm                                    | DH#                | BH01         |   |  |  |  |  |  |  |  |  |  |
|                  |                                   |                                          | Depth              |              |   |  |  |  |  |  |  |  |  |  |
| Test No          |                                   |                                          | 1                  | 2            |   |  |  |  |  |  |  |  |  |  |
| Wt. of Pycnome   | eter, gm                          | (A)                                      | 100                | 96.7         |   |  |  |  |  |  |  |  |  |  |
| Wt. of Pycnome   | eter + Sa                         | ample, gm (B)                            | 120.0              | 116.7        |   |  |  |  |  |  |  |  |  |  |
|                  |                                   | ample + Water, gm (C)                    | 224.2              | 220.7        |   |  |  |  |  |  |  |  |  |  |
| Wt. of Pycnome   |                                   |                                          | 211.8              | 208.0        |   |  |  |  |  |  |  |  |  |  |
| Specific Gravity | = (B-A)                           | )/((D-A)-(C-B))                          | 2.632              | 2.740        |   |  |  |  |  |  |  |  |  |  |
| Average Value    |                                   |                                          |                    | 2.686        |   |  |  |  |  |  |  |  |  |  |
|                  |                                   |                                          |                    |              |   |  |  |  |  |  |  |  |  |  |
|                  |                                   | Tested By :                              |                    | Verified By: |   |  |  |  |  |  |  |  |  |  |
|                  |                                   |                                          | Montra.            |              |   |  |  |  |  |  |  |  |  |  |
|                  |                                   | TRACEABLE MEASUREMEN'S                   |                    |              |   |  |  |  |  |  |  |  |  |  |

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech



#### **Project Information**

| Project information        |              |
|----------------------------|--------------|
| Project Name:              | MCA-Nepal    |
| Project Number:            |              |
| Location:                  | T240N        |
| Sample Information         |              |
| Borehole/Test Pit:         | BH-01        |
| Sample #:                  |              |
| Depth:                     | 0-1.5m       |
| Sample type:               |              |
| Sampled by:                |              |
| Laboratory Comments/0      | Observations |
|                            |              |
| Testing Information        |              |
| Pan ID                     |              |
| Mass of moist soil + pan ( | (g)          |
| Mass of dry soil + pan (g) |              |
| Mass of pan (g)            |              |
| Mass of dry soil (g)       | 334.10       |
| Mass of washed soil (g)    |              |
| Mass loss in wash (g)      |              |
| Summary Parameter          |              |
| Coarser than Gravel%       | 0            |
| Gravel%                    | 2            |
| Sand%                      | 85           |
| Fines%                     | 12           |
| D60, mm:                   | 0.27         |
| D30, mm:                   | 0.12         |
| D10, mm:                   |              |
| Cc:                        |              |
| Cu:                        |              |


| Laboratory Information |                                 |  |  |  |  |  |  |  |  |
|------------------------|---------------------------------|--|--|--|--|--|--|--|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |  |  |  |  |  |  |  |
| Tested By:             |                                 |  |  |  |  |  |  |  |  |
| Reviewed By:           |                                 |  |  |  |  |  |  |  |  |
| Test Date:             |                                 |  |  |  |  |  |  |  |  |
| Report Date:           |                                 |  |  |  |  |  |  |  |  |

#### Air Dry Preparation Method: Oven Dry x

| Teparati | on metho | u. Oven bry | x     |              |        |
|----------|----------|-------------|-------|--------------|--------|
| S.N      | (mm)     | Wt Ret      | % Ret | Cum %<br>Ret | % Pass |
| 1        | 80       | 0.00        | 0.00  | 0.00         | 100.00 |
| 2        | 38.1     | 0.00        | 0.00  | 0.00         | 100.00 |
| 3        | 25.4     | 0.00        | 0.00  | 0.00         | 100.00 |
| 4        | 19.1     | 0.00        | 0.00  | 0.00         | 100.00 |
| 5        | 9.5      | 0.00        | 0.00  | 0.00         | 100.00 |
| 6        | 4.75     | 4.90        | 1.47  | 1.47         | 98.53  |
| 7        | 2.36     | 3.0         | 0.90  | 2.36         | 97.64  |
| 8        | 1.70     | 2.8         | 0.84  | 3.20         | 96.80  |
| 9        | 0.8      | 20.8        | 6.23  | 9.43         | 90.57  |
| 10       | 0.425    | 46.9        | 14.04 | 23.47        | 76.53  |
| 11       | 0.20     | 92.2        | 27.60 | 51.06        | 48.94  |
| 12       | 0.15     | 33.8        | 10.12 | 61.18        | 38.82  |
| 13       | 0.075    | 88.3        | 26.43 | 87.61        | 12.39  |
| Pan      |          | 41.4        |       |              |        |
| Tot Pan  |          | 41.40       | 12.39 | 100.00       | 0.00   |
| Fineness | Mod.     |             |       | 1.52         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

#### Poorly Graded Sand with Silt





| Project Name<br>Location                                                                                                                                                                                                                                                                                                                                      | :                    | MCA-Nepal<br>T240N  |                                         |                   |                                                                            |                      | 0.000010                                |                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-----------------------------------------|-------------------|----------------------------------------------------------------------------|----------------------|-----------------------------------------|--------------------------------------------------------------|
| Bore Hole No<br>Bore Hole Depth                                                                                                                                                                                                                                                                                                                               | :                    | 1<br>1.5m           |                                         |                   |                                                                            | PRG factor:<br>Area: | 0.002312<br>0.0036                      |                                                              |
| Hz Dial Gauge                                                                                                                                                                                                                                                                                                                                                 |                      | Normal Stress (     | 50kN/m <sup>2</sup> )                   | Normal Stres      | s (100 kN/m <sup>2</sup> )                                                 | Normal Stress (      | 200 kN/m <sup>2</sup> )                 |                                                              |
| reading (x<br>0.01mm)                                                                                                                                                                                                                                                                                                                                         | Normal<br>Strain (%) | Load Ring Dial      | Shear<br>Stress<br>(KN/m <sup>2</sup> ) | Load Ring<br>Dial | Shear<br>Stress(KN/m <sup>2</sup>                                          | Load Ring Dial       | Shear<br>Stress<br>(KN/m <sup>2</sup> ) | Remar                                                        |
| 0                                                                                                                                                                                                                                                                                                                                                             | 0%                   | 0                   | 0.00                                    | 0                 | 0.00                                                                       | 0                    | 0.00                                    |                                                              |
| 25                                                                                                                                                                                                                                                                                                                                                            | 0.4%                 | 19                  | 12.20                                   | 35                | 22.48                                                                      | 62                   | 39.82                                   |                                                              |
| 50                                                                                                                                                                                                                                                                                                                                                            | 0.8%                 | 24                  | 15.41                                   | 46                | 29.54                                                                      | 82                   | 52.66                                   |                                                              |
| 75<br>100                                                                                                                                                                                                                                                                                                                                                     | 1%<br>1.7%           | 29<br>32            | 18.62<br>20.55                          | 54<br>60          | 34.68<br>38.53                                                             | 95<br>105            | 61.01<br>67.43                          |                                                              |
| 125                                                                                                                                                                                                                                                                                                                                                           | 2.1%                 | 32                  | 21.84                                   | 64                | 41.10                                                                      | 112                  | 71.93                                   |                                                              |
| 150                                                                                                                                                                                                                                                                                                                                                           | 3%                   | 36                  | 23.12                                   | 68                | 43.67                                                                      | 112                  | 79.64                                   |                                                              |
| 175                                                                                                                                                                                                                                                                                                                                                           | 2.9%                 | 39                  | 25.05                                   | 72                | 46.24                                                                      | 129                  | 82.85                                   |                                                              |
| 200                                                                                                                                                                                                                                                                                                                                                           | 3.3%                 | 41                  | 26.33                                   | 75                | 48.17                                                                      | 134                  | 86.06                                   |                                                              |
| 250                                                                                                                                                                                                                                                                                                                                                           | 4%                   | 43                  | 27.62                                   | 81                | 52.02                                                                      | 145                  | 93.12                                   |                                                              |
| 300                                                                                                                                                                                                                                                                                                                                                           | 5.0%                 | 46                  | 29.54                                   | 85                | 54.59                                                                      | 155                  | 99.54                                   |                                                              |
| 350                                                                                                                                                                                                                                                                                                                                                           | 5.8%                 | 49                  | 31.47                                   | 89                | 57.16                                                                      | 163                  | 104.68                                  |                                                              |
| 400                                                                                                                                                                                                                                                                                                                                                           | 7%                   | 50                  | 32.11                                   | 91                | 58.44                                                                      | 172                  | 110.46                                  |                                                              |
| 450<br>500                                                                                                                                                                                                                                                                                                                                                    | 7.5%                 | 52<br>53            | 33.40<br>34.04                          | 97<br>98          | 62.30<br>62.94                                                             | 180<br>186           | 115.60<br>119.45                        |                                                              |
| 550                                                                                                                                                                                                                                                                                                                                                           | 9.2%                 | 54                  | 34.68                                   | 101               | 64.86                                                                      | 191                  | 119.43                                  |                                                              |
| 600                                                                                                                                                                                                                                                                                                                                                           | 10%                  | 56                  | 35.96                                   | 101               | 66.15                                                                      | 191                  | 125.23                                  |                                                              |
| 700                                                                                                                                                                                                                                                                                                                                                           | 11.7%                |                     |                                         | 105               | 67.43                                                                      | 201                  | 129.09                                  |                                                              |
| 800                                                                                                                                                                                                                                                                                                                                                           | 13.3%                |                     |                                         | 107               | 68.72                                                                      | 204                  | 131.01                                  |                                                              |
| 900                                                                                                                                                                                                                                                                                                                                                           | 15%                  |                     |                                         | 108               | 69.36                                                                      | 206                  | 132.30                                  |                                                              |
| 1000                                                                                                                                                                                                                                                                                                                                                          | 16.7%                |                     |                                         | 109               | 70.00                                                                      | 209                  | 134.22                                  |                                                              |
| 1100                                                                                                                                                                                                                                                                                                                                                          | 18.3%                |                     |                                         |                   |                                                                            | 211                  | 135.51                                  |                                                              |
| 1200                                                                                                                                                                                                                                                                                                                                                          | 20%                  |                     |                                         |                   |                                                                            | 213                  | 136.79                                  |                                                              |
| 1300<br>1400                                                                                                                                                                                                                                                                                                                                                  | 21.7%                |                     |                                         |                   |                                                                            | 215<br>217           | 138.08<br>139.36                        |                                                              |
| 1500                                                                                                                                                                                                                                                                                                                                                          | 25%                  |                     |                                         |                   |                                                                            | 217                  | 139.30                                  |                                                              |
| 1600                                                                                                                                                                                                                                                                                                                                                          | 26.7%                |                     |                                         |                   |                                                                            |                      |                                         |                                                              |
| 140.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.0         120.00         120.00         120.00         120.00         120.00         120.00         120.00         100.00         20.00         20.00 | 50.0                 |                     |                                         | 50.0 300.0        | 160<br>(e) 140<br>120<br>100<br>100<br>100<br>100<br>100<br>100<br>20<br>0 |                      | .0 6.0<br>splacement (<br>31<br>6.40    | 50 kPa<br>100 kPa<br>200 kPa<br>8.0<br>mm)<br>Degree<br>kN/n |
| 0.00                                                                                                                                                                                                                                                                                                                                                          | 0% 3%                | 6% 9% 129<br>Strain | % 15%<br>n (%)                          | 18% 21%           | 24%                                                                        |                      | í                                       |                                                              |

MSc. Virginia Tech

This calculation is based on the SPT N-value.

#### Bore Hole No. - T240N

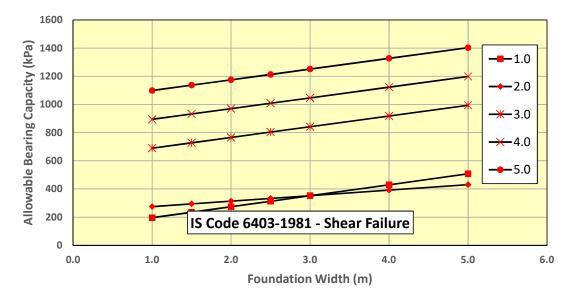
# Safe Settlement Bearing Pressure kN/m<sup>2</sup> (IS:6403-65 mm Settlement)

| Depth of Foundation, D <sub>f</sub> (m) | 1     | 3     | 4     | 6     | 7      | 9     | 10    | 12    |
|-----------------------------------------|-------|-------|-------|-------|--------|-------|-------|-------|
| Depth of Foundation, $D_{f}(m)$         | T     | 3     | 4     | 0     | /      | 9     | 10    | 12    |
| SPT N Value                             | 21    | 100   | 95    | 100   | 125    | 83    | 100   | 100   |
| Unit wt of soil kN/m3                   | 18    | 19    | 19    | 19    | 19     | 19    | 19    | 19    |
| Water Reduction Factor Wy               | 0.5   | 0.5   | 0.5   | 0.5   | 0.5    | 0.5   | 0.5   | 0.5   |
|                                         |       | -     |       |       |        |       |       |       |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0   | 3.0   | 4.0   | 6.0   | 7.0    | 9.0   | 10.0  | 12.0  |
| Safe Settlement Bearing                 | 220   | 4222  | 1100  | 4222  | 4540   | 1010  | 1222  | 1222  |
| Pressure, kN/m <sup>2</sup>             | 229   | 1232  | 1168  | 1232  | 1549   | 1016  | 1232  | 1232  |
| Modulus of Subgrade Reaction,           | 10200 | 00550 | 02472 | 00550 | 122052 | 01200 | 00550 | 00550 |
| Ks (kN/m <sup>3</sup> )                 | 18288 | 98552 | 93472 | 98552 | 123952 | 81280 | 98552 | 98552 |

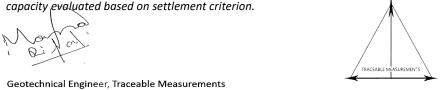
TRACEABLE MEASUREMEN

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

Prepared By: Manab Rijal


Traceable Measurement (P) Ltd.

This calculation based on the IS:6403-1981. The allowable bearing capacity is based on the shear failure of soil. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.


| Bore Hole No T240N                               |       |       |       |       |       |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Depth of Foundation, $D_f(m)$                    | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |
| Friction angle                                   | 31    | 31    | 35    | 35    | 35    |
| SPT N Value                                      | 21    | 21    | 100   | 95    | 95    |
| Unit wt. of soil, kN/m <sup>3</sup>              | 18    | 18    | 19    | 19    | 19    |
| Buoyant Unit wt. of soil. kN/m <sup>3</sup>      | 8     | 8     | 9     | 9     | 9     |
| Cohesion. kN/m <sup>2</sup>                      | 0     | 0     | 0     | 0     | 0     |
| Water Reduction Factor $W_{\boldsymbol{\gamma}}$ | 1     | 0.5   | 0.5   | 0.5   | 0.5   |
| Nq                                               | 20.63 | 20.63 | 33.30 | 33.30 | 33.30 |
| N <sub>c</sub>                                   | 32.67 | 32.67 | 46.12 | 46.12 | 46.12 |
| N <sub>v</sub>                                   | 25.99 | 25.99 | 48.03 | 48.03 | 48.03 |

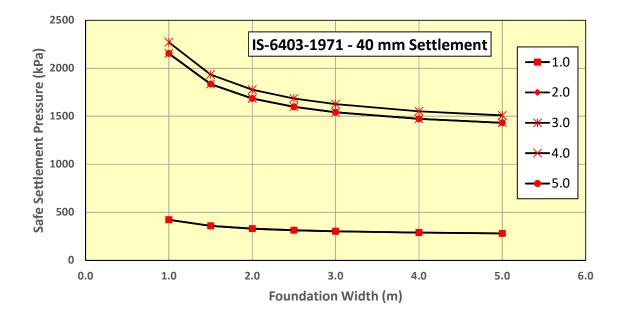
#### New Damauli-Ratamate 400 kV D/C TL

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS: 6403-1981 Shear<br>Failure ) |     |     |      |      |  |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------|-----|-----|------|------|--|--|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                        | 2.0 | 3.0 | 4.0  | 5.0  |  |  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                            |     |     |      |      |  |  |  |  |  |  |  |
| 1.0                                     | 196                                                                        | 275 | 690 | 894  | 1099 |  |  |  |  |  |  |  |
| 1.5                                     | 235                                                                        | 294 | 728 | 932  | 1137 |  |  |  |  |  |  |  |
| 2.0                                     | 274                                                                        | 314 | 766 | 970  | 1175 |  |  |  |  |  |  |  |
| 2.5                                     | 313                                                                        | 333 | 804 | 1008 | 1213 |  |  |  |  |  |  |  |
| 3.0                                     | 352                                                                        | 353 | 842 | 1046 | 1251 |  |  |  |  |  |  |  |
| 4.0                                     | 430                                                                        | 392 | 918 | 1122 | 1327 |  |  |  |  |  |  |  |
| 5.0                                     | 508                                                                        | 431 | 994 | 1198 | 1403 |  |  |  |  |  |  |  |



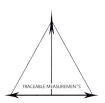
Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion. Please refer to bearing capacity *evaluated* based on settlement criterion.




MSc. Virginia Tech

This calculation based on the IS:6403-1971. The allowable bearing capacity is based on the settlement of 40 mm. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

| <u>Bore Hole No T240N</u>               |     |     |     |     |     |
|-----------------------------------------|-----|-----|-----|-----|-----|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 |
| Friction angle                          | 31  | 31  | 35  | 35  | 35  |
| SPT N Value                             | 21  | 21  | 100 | 95  | 95  |
| Unit wt of soil kN/m3                   | 18  | 19  | 19  | 19  | 19  |
| Water Reduction Factor Wy               | 1   | 0.5 | 0.5 | 0.5 | 0.5 |


### amauli-Ratamate 400 kV D/C TL

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS:6403-1971-40 mm |     |      |      |      |  |  |  |  |  |  |  |
|-----------------------------------------|--------------------------------------------------------------|-----|------|------|------|--|--|--|--|--|--|--|
|                                         | Settlement)                                                  |     |      |      |      |  |  |  |  |  |  |  |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                          | 2.0 | 3.0  | 4.0  | 5.0  |  |  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                              |     |      |      |      |  |  |  |  |  |  |  |
| 1.0                                     | 421                                                          | 421 | 2270 | 2153 | 2153 |  |  |  |  |  |  |  |
| 1.5                                     | 359                                                          | 359 | 1935 | 1835 | 1835 |  |  |  |  |  |  |  |
| 2.0                                     | 330                                                          | 330 | 1777 | 1685 | 1685 |  |  |  |  |  |  |  |
| 2.5                                     | 313                                                          | 313 | 1685 | 1598 | 1598 |  |  |  |  |  |  |  |
| 3.0                                     | 302                                                          | 302 | 1626 | 1542 | 1542 |  |  |  |  |  |  |  |
| 4.0                                     | 288                                                          | 288 | 1553 | 1472 | 1472 |  |  |  |  |  |  |  |
| 5.0                                     | 280                                                          | 280 | 1510 | 1432 | 1432 |  |  |  |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion.





Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

#### Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal

| <u>New Da</u> | mauli-Rata         | mate 400 k           | V D/C TL |                      | Borehole -           | T240N   |                    |         |                |         |                   |        |                     |                     |                     |                |                |    |
|---------------|--------------------|----------------------|----------|----------------------|----------------------|---------|--------------------|---------|----------------|---------|-------------------|--------|---------------------|---------------------|---------------------|----------------|----------------|----|
| De            | pth to GW          | 4.5                  | m        |                      |                      |         | Input              |         |                |         |                   |        |                     |                     |                     |                |                |    |
|               | PGA                | 0.3                  | g        |                      |                      | NE:     | Water <sup>-</sup> | Table n | ot Enc         | ountere | d                 |        |                     |                     |                     |                |                |    |
|               | Mw                 | 7.8                  | 1        |                      |                      |         |                    |         |                |         |                   |        |                     |                     |                     |                |                |    |
|               | Pa                 | 101.3                | kPA      |                      |                      |         |                    |         |                |         |                   |        |                     |                     |                     |                |                |    |
|               |                    |                      | 1        |                      |                      |         |                    |         |                |         |                   |        |                     |                     |                     |                |                |    |
| Depth         |                    | Total unit           | Fines    | σ                    | u                    | σ'      |                    |         |                |         |                   |        |                     |                     |                     |                |                |    |
| (m)           | N <sub>field</sub> | wt.γ <sub>t</sub>    | content  | (kN/m <sup>2</sup> ) | (kN/m <sup>2</sup> ) | (kN/m²) | α(z)               | β(z)    | r <sub>d</sub> | MSF     | N <sub>1,60</sub> | ΔN1,60 | N <sub>1,60cs</sub> | CSR <sub>M7.5</sub> | CRR <sub>M7.5</sub> | C <sub>σ</sub> | k <sub>σ</sub> | FS |
| (111)         |                    | (KN/m <sup>3</sup> ) | content  | (KN/111)             | (KN/111)             | (KN/M)  |                    |         |                |         |                   |        |                     |                     |                     |                |                |    |
| 1.0           | 33                 | 18.0                 | 12       | 18                   | 0                    | 18      | -0.03              | 0.00    | 1.00           | 0.92    | 47                | 2.07   | 49                  | 0.21                | 0.60                | 0.30           | 1.10           | NL |
| 3.0           | 43                 | 19.0                 | 12       | 56                   | 0                    | 56      | -0.13              | 0.02    | 0.99           | 0.92    | 42                | 2.07   | 44                  | 0.21                | 0.60                | 0.30           | 1.10           | NL |
| 4.0           | 50                 | 19.0                 | 12       | 75                   | 0                    | 75      | -0.20              | 0.02    | 0.98           | 0.92    | 45                | 2.07   | 47                  | 0.21                | 0.60                | 0.30           | 1.09           | NL |
| 6.0           | 86                 | 19.0                 | 12       | 113                  | 59                   | 54      | -0.34              | 0.04    | 0.96           | 0.92    | 84                | 2.07   | 86                  | 0.42                | 0.60                | -0.21          | 0.87           | NL |
| 7.0           | 100                | 19.0                 | 12       | 132                  | 69                   | 63      | -0.42              | 0.05    | 0.95           | 0.92    | 94                | 2.07   | 96                  | 0.42                | 0.60                | -0.16          | 0.92           | NL |
| 9.0           | 94                 | 19.0                 | 12       | 170                  | 88                   | 82      | -0.59              | 0.07    | 0.93           | 0.92    | 82                | 2.07   | 84                  | 0.41                | 0.60                | -0.22          | 0.95           | NL |
| 10.0          | 83                 | 19.0                 | 12       | 189                  | 98                   | 91      | -0.68              | 0.08    | 0.92           | 0.92    | 71                | 2.07   | 73                  | 0.40                | 0.60                | -0.34          | 0.96           | NL |

Notes: 1) If above the water table, not subject to liquefaction

2) Fines content > 35%; Liquid Limit (LL) > 35%; and natural moisture content within 90% of the LL (i.e., 'Chinese Criteria'), not subject to liquefaction

3) Cyclical Resistance Ratio (CRR) equal to or greater than 0.5, not subject to liquefaction.

4) Clean sand  $(N1)_{60}$  equivalent equal to or greater than 34, not subject to liquefaction.

5) Fines content 50% or greater, not subject to liquefaction.

6) NL = Non-Liquefiable.

7) FS<1 indicates liquifiable soils.

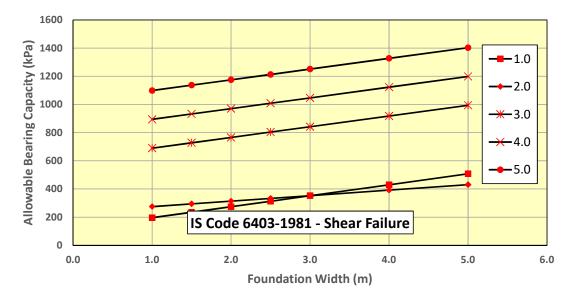
TRACEABLE MEASUREMENTS



Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

# APPENDIX-E Laboratory Data and Detail Analysis of Ratamate-New Hetauda 400 kV D/C TL (T138N)

|                                                                                                                                                       |                                                                                                 | Tra                                         | ceab                  | le Mea<br>Dr                                                                                    | asur<br>illing              |    | ent ] | Pvt     | . Lto         | 1.            |                 |      |      |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------|-----------------------------|----|-------|---------|---------------|---------------|-----------------|------|------|---|
| Project:<br>Location:<br>Client:<br>Borehole No:<br>Dates                                                                                             | Soil Investigation<br>Changes in 400<br>Ratamate New<br>MCA-N<br>T138N<br>Started:<br>Finished: | kV Transı                                   | Easting               | Updated Line Design for 30 km of<br>Position Cordinate<br>ing (m) Northing (m)<br>14271 3035190 |                             |    |       |         |               |               |                 |      |      |   |
| Method:<br>Hammer Type:                                                                                                                               | DCPT<br>Monkey Hamm                                                                             | ar                                          |                       |                                                                                                 |                             |    |       |         |               | Water Ta      | ıble :-         | 7.3m | L    |   |
| Hammer Type: Monkey Hammer                                                                                                                            |                                                                                                 |                                             |                       |                                                                                                 |                             |    |       |         |               |               | alue            | SPT  |      | - |
| Material I                                                                                                                                            | Description                                                                                     | Symbol                                      | Depth, m              | Sample No.<br>&Type                                                                             | Sample No<br>&Type<br>10 cm |    | 10 cm | N-Value | Ncr-Value     |               |                 | DCP  | Т    |   |
|                                                                                                                                                       |                                                                                                 |                                             | - 1<br>- 2<br>- 3     | DCPT                                                                                            | 4                           | 11 | 7     |         | 22<br>50/9    | -             |                 |      |      |   |
|                                                                                                                                                       |                                                                                                 |                                             | - 4                   | DCPT                                                                                            |                             |    |       |         | 50/12         |               |                 |      |      |   |
| Gravel and Bo                                                                                                                                         | Gravel and Boulder with sand                                                                    |                                             |                       | DCPT                                                                                            |                             |    |       |         | 50/6<br>50/12 |               |                 |      |      |   |
|                                                                                                                                                       |                                                                                                 |                                             |                       | DCPT                                                                                            |                             |    |       |         | 50/13<br>50/7 |               |                 |      |      |   |
| End Depth                                                                                                                                             |                                                                                                 |                                             | - 12                  | DCPT<br>d at 12.001                                                                             | n n                         |    |       |         | 50/9<br>Groun | d: Drv        |                 |      |      |   |
| Types of Soil                                                                                                                                         |                                                                                                 |                                             | 1                     |                                                                                                 |                             |    | N     | Value   | 2             |               |                 |      |      |   |
| Granular Soil                                                                                                                                         | Compactness                                                                                     |                                             | io 4                  | 4 to                                                                                            |                             |    | 10 t  | o 30    |               | 30 to 50      |                 |      |      |   |
| Cohesive Soil                                                                                                                                         | Consistency                                                                                     | 0 t                                         | ry Loos<br><b>o 2</b> | 2 to                                                                                            | 4                           |    |       | o 8     |               | Dense 8 to 16 | Very D<br>16 to | 32   | > 32 |   |
| Notes:                                                                                                                                                | Consistency                                                                                     | Very                                        | y Soft                | Sot                                                                                             | ft                          |    |       | . Soft  |               | Stiff         | Very            |      | Hard |   |
| <ol> <li>Bottom of Be</li> <li>Boring termi</li> <li>Boring backt</li> <li>Emperical Re</li> <li>Ncr = 1.5 N for</li> <li>Ncr = 1.75 N for</li> </ol> |                                                                                                 | cuttings up<br>DCPT (No<br>0 m<br>to 6.00 m | er) and S             |                                                                                                 | ues:                        |    |       |         |               |               |                 |      |      |   |
|                                                                                                                                                       |                                                                                                 |                                             |                       |                                                                                                 |                             |    | ENTS  |         | Ņ             | long          | ou!             |      |      |   |


Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

This calculation based on the IS:6403-1981. The allowable bearing capacity is based on the shear failure of soil. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

| <u>Bore Hole No T138N</u>                        |       |       |       |       |       |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Depth of Foundation, D <sub>f</sub> (m)          | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |
| Friction angle                                   | 31    | 31    | 35    | 35    | 35    |
| SPT N Value                                      | 14    | 14    | 100   | 71    | 71    |
| Unit wt. of soil, kN/m <sup>3</sup>              | 18    | 18    | 19    | 19    | 19    |
| Buoyant Unit wt. of soil. kN/m <sup>3</sup>      | 8     | 8     | 9     | 9     | 9     |
| Cohesion. kN/m <sup>2</sup>                      | 0     | 0     | 0     | 0     | 0     |
| Water Reduction Factor $W_{\boldsymbol{\gamma}}$ | 1     | 0.5   | 0.5   | 0.5   | 0.5   |
| Nq                                               | 20.63 | 20.63 | 33.30 | 33.30 | 33.30 |
| N <sub>c</sub>                                   | 32.67 | 32.67 | 46.12 | 46.12 | 46.12 |
| Ν <sub>γ</sub>                                   | 25.99 | 25.99 | 48.03 | 48.03 | 48.03 |

# Ratamate New Heatuda 400 kV D/C TL

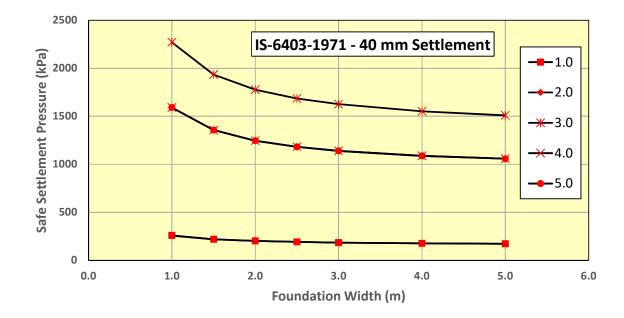
|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS: 6403-1981 Shear<br>Failure ) |     |     |      |      |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------|-----|-----|------|------|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                        | 2.0 | 3.0 | 4.0  | 5.0  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                            |     |     |      |      |  |  |  |  |  |
| 1.0                                     | 196                                                                        | 275 | 690 | 894  | 1099 |  |  |  |  |  |
| 1.5                                     | 235                                                                        | 294 | 728 | 932  | 1137 |  |  |  |  |  |
| 2.0                                     | 274                                                                        | 314 | 766 | 970  | 1175 |  |  |  |  |  |
| 2.5                                     | 313                                                                        | 333 | 804 | 1008 | 1213 |  |  |  |  |  |
| 3.0                                     | 352                                                                        | 353 | 842 | 1046 | 1251 |  |  |  |  |  |
| 4.0                                     | 430                                                                        | 392 | 918 | 1122 | 1327 |  |  |  |  |  |
| 5.0                                     | 508                                                                        | 431 | 994 | 1198 | 1403 |  |  |  |  |  |



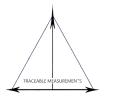
Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion. Please refer to bearing capacity evaluated based on settlement criterion.






Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

This calculation based on the IS:6403-1971. The allowable bearing capacity is based on the settlement of 40 mm. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.


| <u>Bore Hole No T138N</u>               |     |     |     |     |     |
|-----------------------------------------|-----|-----|-----|-----|-----|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 |
| Friction angle                          | 31  | 31  | 35  | 35  | 35  |
| SPT N Value                             | 14  | 14  | 100 | 71  | 71  |
| Unit wt of soil kN/m3                   | 18  | 19  | 19  | 19  | 19  |
| Water Reduction Factor Wy               | 1   | 0.5 | 0.5 | 0.5 | 0.5 |

# <u>Ratamate New Heatuda 400 kV D/C TL</u>

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS:6403-1971-40 mm<br>Settlement) |     |      |      |      |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------|-----|------|------|------|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | ) 1.0 2.0 3.0 4.0 5.0                                                       |     |      |      |      |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                             |     |      |      |      |  |  |  |  |  |
| 1.0                                     | 257                                                                         | 257 | 2270 | 1592 | 1592 |  |  |  |  |  |
| 1.5                                     | 219                                                                         | 219 | 1935 | 1356 | 1356 |  |  |  |  |  |
| 2.0                                     | 201                                                                         | 201 | 1777 | 1246 | 1246 |  |  |  |  |  |
| 2.5                                     | 191                                                                         | 191 | 1685 | 1181 | 1181 |  |  |  |  |  |
| 3.0                                     | 184                                                                         | 184 | 1626 | 1140 | 1140 |  |  |  |  |  |
| 4.0                                     | 176                                                                         | 176 | 1553 | 1088 | 1088 |  |  |  |  |  |
| 5.0                                     | 171                                                                         | 171 | 1510 | 1058 | 1058 |  |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion.





Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

This calculation is based on the SPT N-value.

#### Bore Hole No. - T138N

# Safe Settlement Bearing Pressure kN/m<sup>2</sup> (IS:6403-65 mm Settlement)

| Depth of Foundation, D <sub>f</sub> (m) | 1     | 3     | 4     | 6     | 7     | 9       | 10    | 12    |
|-----------------------------------------|-------|-------|-------|-------|-------|---------|-------|-------|
| SPT N Value                             | 14    | 100   | 71    | 100   | 62    | 57      | 100   | 83    |
| Unit wt of soil kN/m3                   | 18    | 19    | 19    | 19    | 19    | 19      | 19    | 19    |
| Water Reduction Factor Wy               | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5     | 0.5   | 0.5   |
|                                         |       | -     |       |       |       | -       |       |       |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0   | 3.0   | 4.0   | 6.0   | 7.0   | 9.0     | 10.0  | 12.0  |
| Safe Settlement Bearing                 | 140   | 1222  | 964   | 1777  | 740   | COC     | 1222  | 1010  |
| Pressure, kN/m <sup>2</sup>             | 140   | 1232  | 864   | 1232  | 749   | 686     | 1232  | 1016  |
| Modulus of Subgrade Reaction,           | 44470 | 00550 | c0000 | 00550 | 50044 | E 40C 4 | 00550 | 01200 |
| Ks (kN/m <sup>3</sup> )                 | 11176 | 98552 | 69088 | 98552 | 59944 | 54864   | 98552 | 81280 |

RACEABLE N

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

Prepared By: Manab Rijal

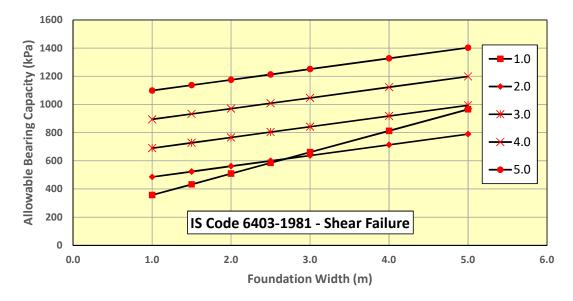
Traceable Measurement (P) Ltd.

# APPENDIX-F Laboratory Data and Detail Analysis of Ratamate-New Hetauda 400 kV D/C TL (T140N)

|                                                                                                                                                                                                                                    |                                                                                                                                                           | Tra                                                                                 | ceabl                                   | e Mea<br>Dri        | Sur<br>Iling 1 |                   | nt F                    | Pvt.                                                               | . Lt      | d.                              |         |             |      |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|---------------------|----------------|-------------------|-------------------------|--------------------------------------------------------------------|-----------|---------------------------------|---------|-------------|------|---|
| Project:         Soil Investigation Works of Consulting Services for Detailed<br>Changes in 400kV Transmission Line Route Alignment           Location:         Ratamate New Heatuda 400 kV D/C TL           Client:         MCA-N |                                                                                                                                                           |                                                                                     |                                         |                     |                |                   |                         |                                                                    |           | pdated Lir<br>Positior<br>g (m) | n Cordi |             |      |   |
| Borehole No:<br>Dates                                                                                                                                                                                                              | T140N<br>Started:<br>Finished:                                                                                                                            |                                                                                     | 9/2079<br>9/2079                        |                     |                |                   |                         |                                                                    | 3035      | 560                             | 30      | )35120      |      |   |
| Method:<br>Hammer Type:                                                                                                                                                                                                            | DCPT<br>Monkey Hamm                                                                                                                                       | er                                                                                  |                                         |                     |                |                   |                         |                                                                    |           | Water Ta                        | ble :-  | Dry         |      |   |
| Material I                                                                                                                                                                                                                         | Description                                                                                                                                               | Symbol                                                                              | Depth, m                                | Sample No.<br>&Type | No<br>10 Cm    | of ble<br>E<br>OI | 10 cm                   | N-Value                                                            | Ncr-Value | N-V                             | alue    | SPT<br>DCF  |      |   |
| Gravel and Bo                                                                                                                                                                                                                      |                                                                                                                                                           | - 1<br>- 2<br>- 3<br>- 4<br>- 5<br>- 6<br>- 7<br>- 8<br>- 9<br>- 10<br>- 11<br>- 12 | DCPT DCPT DCPT DCPT DCPT DCPT DCPT DCPT |                     |                |                   |                         | 50/12<br>50/15<br>50/10<br>50/9<br>50/13<br>50/11<br>50/14<br>50/8 |           |                                 |         |             |      |   |
| End Depth                                                                                                                                                                                                                          |                                                                                                                                                           |                                                                                     |                                         | d at 12.00r         | n              |                   |                         |                                                                    |           | ind: Dry                        |         |             |      |   |
| <u>Types of Soil</u>                                                                                                                                                                                                               | 1                                                                                                                                                         |                                                                                     |                                         |                     |                |                   |                         | alue                                                               |           |                                 |         |             |      | 4 |
| Granular Soil                                                                                                                                                                                                                      | Compactness                                                                                                                                               |                                                                                     | t <b>o 4</b><br>ry Loose                | 4 to                |                |                   | <b>10 t</b> o<br>Med. I |                                                                    | <b>,</b>  | <b>30 to 50</b><br>Dense        |         | 50<br>Dense |      | - |
| Cohesive Soil                                                                                                                                                                                                                      | Consistency                                                                                                                                               | 0 1                                                                                 | io 2                                    | 2 to                | 4              |                   | 4 to                    | 8                                                                  |           | 8 to 16                         | 16 t    | o 32        | > 32 |   |
| Notes:                                                                                                                                                                                                                             |                                                                                                                                                           | Ver                                                                                 | y Soft                                  | Sof                 | τ              |                   | Med.                    | Soft                                                               |           | Stiff                           | Very    | Stiff       | Hard |   |
| 2. Boring termi<br>3. Boring backt<br>4. Emperical Ro<br>Ner = 1.5 N for<br>Ner = 1.75 N for                                                                                                                                       | oring at 20.0 m.<br>nated at selected<br>filled with auger<br>elation Between<br>depths upto 3.00<br>or depths 3.00 m<br>or depths greater<br>DCPT values | cuttings up<br>DCPT (No<br>0 m<br>to 6.00 m                                         | er) and S                               |                     | ues:           |                   |                         |                                                                    |           |                                 |         |             |      |   |
| N = SPT values                                                                                                                                                                                                                     |                                                                                                                                                           |                                                                                     |                                         |                     |                |                   |                         |                                                                    |           |                                 |         |             |      |   |
|                                                                                                                                                                                                                                    |                                                                                                                                                           |                                                                                     |                                         |                     | $\wedge$       |                   |                         |                                                                    |           | $\bigcap$                       | 2       |             |      |   |

TRACEABLE MEASUREMENTS

1 Q


Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

This calculation based on the IS:6403-1981. The allowable bearing capacity is based on the shear failure of soil. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

| <u>Bore Hole No T140N</u>                        |       |       |       |       |       |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Depth of Foundation, $D_f(m)$                    | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |
| Friction angle                                   | 35    | 35    | 35    | 35    | 35    |
| SPT N Value                                      | 83    | 83    | 63    | 85    | 85    |
| Unit wt. of soil, kN/m <sup>3</sup>              | 19    | 19    | 19    | 19    | 19    |
| Buoyant Unit wt. of soil. kN/m <sup>3</sup>      | 9     | 9     | 9     | 9     | 9     |
| Cohesion. kN/m <sup>2</sup>                      | 0     | 0     | 0     | 0     | 0     |
| Water Reduction Factor $W_{\boldsymbol{\gamma}}$ | 1     | 0.5   | 0.5   | 0.5   | 0.5   |
| Nq                                               | 33.30 | 33.30 | 33.30 | 33.30 | 33.30 |
| N <sub>c</sub>                                   | 46.12 | 46.12 | 46.12 | 46.12 | 46.12 |
| N <sub>v</sub>                                   | 48.03 | 48.03 | 48.03 | 48.03 | 48.03 |

#### Ratamate New Heatuda 400 kV D/C TL

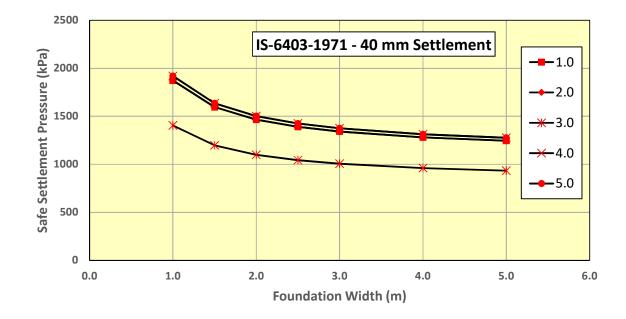
|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS: 6403-1981 Shear<br>Failure ) |     |     |      |      |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------|-----|-----|------|------|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                        | 2.0 | 3.0 | 4.0  | 5.0  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                            |     |     |      |      |  |  |  |  |  |
| 1.0                                     | 357                                                                        | 485 | 690 | 894  | 1099 |  |  |  |  |  |
| 1.5                                     | 433                                                                        | 523 | 728 | 932  | 1137 |  |  |  |  |  |
| 2.0                                     | 509                                                                        | 561 | 766 | 970  | 1175 |  |  |  |  |  |
| 2.5                                     | 585                                                                        | 599 | 804 | 1008 | 1213 |  |  |  |  |  |
| 3.0                                     | 661                                                                        | 637 | 842 | 1046 | 1251 |  |  |  |  |  |
| 4.0                                     | 813                                                                        | 713 | 918 | 1122 | 1327 |  |  |  |  |  |
| 5.0                                     | 965                                                                        | 789 | 994 | 1198 | 1403 |  |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion. Please refer to bearing capacity evaluated based on settlement criterion.






Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

This calculation based on the IS:6403-1971. The allowable bearing capacity is based on the settlement of 40 mm. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

| <u>Bore Hole No T140N</u>               |     |     |     |     |     |
|-----------------------------------------|-----|-----|-----|-----|-----|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 |
| Friction angle                          | 35  | 35  | 35  | 35  | 35  |
| SPT N Value                             | 83  | 83  | 63  | 85  | 85  |
| Unit wt of soil kN/m3                   | 18  | 19  | 19  | 19  | 19  |
| Water Reduction Factor Wy               | 1   | 0.5 | 0.5 | 0.5 | 0.5 |

## <u>Ratamate New Heatuda 400 kV D/C TL</u>

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS:6403-1971-40 mm<br>Settlement) |      |      |      |      |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------|------|------|------|------|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | on, D <sub>f</sub> (m) 1.0 2.0 3.0 4.0 5.0                                  |      |      |      |      |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                             |      |      |      |      |  |  |  |  |  |
| 1.0                                     | 1873                                                                        | 1873 | 1404 | 1919 | 1919 |  |  |  |  |  |
| 1.5                                     | 1596                                                                        | 1596 | 1197 | 1635 | 1635 |  |  |  |  |  |
| 2.0                                     | 1465                                                                        | 1465 | 1099 | 1502 | 1502 |  |  |  |  |  |
| 2.5                                     | 1390                                                                        | 1390 | 1042 | 1425 | 1425 |  |  |  |  |  |
| 3.0                                     | 1341                                                                        | 1341 | 1006 | 1374 | 1374 |  |  |  |  |  |
| 4.0                                     | 1280                                                                        | 1280 | 960  | 1312 | 1312 |  |  |  |  |  |
| 5.0                                     | 1245                                                                        | 1245 | 934  | 1276 | 1276 |  |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion.



Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

This calculation is based on the SPT N-value.

Bore Hole No. - T140N

# Safe Settlement Bearing Pressure kN/m<sup>2</sup> (IS:6403-65 mm Settlement)

| Depth of Foundation, D <sub>f</sub> (m) | 1     | 3      | 4     | 6     | 7       | 9     | 10    | 12    |
|-----------------------------------------|-------|--------|-------|-------|---------|-------|-------|-------|
| SPT N Value                             | 83    | 66     | 85    | 95    | 57      | 68    | 53    | 93    |
| Unit wt of soil kN/m3                   | 19    | 19     | 19    | 19    | 19      | 19    | 19    | 19    |
| Water Reduction Factor Wy               | 0.5   | 0.5    | 0.5   | 0.5   | 0.5     | 0.5   | 0.5   | 0.5   |
|                                         |       |        |       |       |         |       |       |       |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0   | 3.0    | 4.0   | 6.0   | 7.0     | 9.0   | 10.0  | 12.0  |
| Safe Settlement Bearing                 | 1016  | 800    | 1041  | 1160  | 686     | 826   | 635   | 1140  |
| Pressure, kN/m <sup>2</sup>             | 1016  | 800    | 1041  | 1168  | 080     | 820   | 035   | 1143  |
| Modulus of Subgrade Reaction,           | 01200 | C 4000 | 02212 | 02472 | F 40C 4 | 66040 | F0000 | 01440 |
| Ks (kN/m <sup>3</sup> )                 | 81280 | 64008  | 83312 | 93472 | 54864   | 66040 | 50800 | 91440 |

RACEABLE MEASUREMEN

Prepared By: Manab Rijal

Traceable Measurement (P) Ltd.

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

# APPENDIX-G Laboratory Data and Detail Analysis of Indo Nepal Border-New Butwal 400 kV D/C TL (T17/1N)

|                                                                          |                                                                                                    | Trac                                      | ceat                                                                                                                                                     | ole  | Meas<br>Dril         | sure<br>ling I |             | ent ]        | Pvt                  | . L1    | t <b>d.</b>                                                                                                |                                  |                                          |                |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|----------------|-------------|--------------|----------------------|---------|------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|----------------|
| Project:<br>Location:<br>Client:<br>Borehole No:<br>Dates                | Changes in 400                                                                                     | 0kV Trans<br>oder - New<br>17/0           | Works of Consulting Services for Detailed Survey<br>7 Transmission Line Route Alignment<br>r - New Butwal 400 kV D/C TL<br>E<br>17/09/2079<br>20/09/2079 |      |                      |                |             |              |                      |         | y and Updated Line Design for 30 km of<br>Position Cordinate<br>Easting (m) Northing (m)<br>173344 3043566 |                                  |                                          |                |
| Method:                                                                  | Rotary Boring                                                                                      |                                           |                                                                                                                                                          |      |                      |                |             |              |                      |         | Water Ta                                                                                                   | ible :- 6n                       | 1                                        |                |
| rianniner Type.                                                          | Monkey Hamm                                                                                        |                                           |                                                                                                                                                          |      |                      | No.            | of bl       | ows          |                      |         | N-V                                                                                                        | alue SI                          | T                                        |                |
| Material Description                                                     |                                                                                                    | Symbol                                    | Depth, m                                                                                                                                                 |      | Sample No.<br>& Type | 15 cm<br>15 cm |             | cm<br>-Value |                      | N-Value | 0                                                                                                          | D0                               | CPT ==================================== | <b>∃</b><br>80 |
|                                                                          | wet, grey, fine to<br>ained sand                                                                   | sc                                        | - 1                                                                                                                                                      |      | SPT                  | 8              | 10          | 11           |                      | 21      | 1.5                                                                                                        |                                  |                                          |                |
| Clay; wet, gre                                                           | l Sand with Fat<br>y, fine to coarse<br>ed sand                                                    | (SP-<br>SC)                               | u<br>u                                                                                                                                                   |      | SPT                  | 10             | 14          | 11           |                      | 25      | 3 —                                                                                                        |                                  |                                          | _              |
|                                                                          | led Sand with                                                                                      |                                           | - 4<br>- 5                                                                                                                                               |      | SPT                  | 9              | 13          | 15           |                      | 28      | 4.5                                                                                                        | 7                                |                                          | _              |
| Elastic Silt; mo                                                         | ist, brown, contains<br>arse grained sand                                                          | SP-<br>SM                                 | - 6                                                                                                                                                      |      | SPT                  | 8              | 11          | 12           |                      | 23      | 6                                                                                                          |                                  |                                          | _              |
| brown, fine to co                                                        | ed Sand; moist,<br>parse grained sand                                                              | SP                                        | - 7<br>- 8                                                                                                                                               |      | SPT                  | 20             | 28          | 35           |                      | 63      | 7.5                                                                                                        |                                  |                                          | _              |
|                                                                          | ith Gravel; moist,<br>parse grained sand                                                           | SP                                        | - 9                                                                                                                                                      |      | SPT                  | 15             | 25          | 33           |                      | 58      | 9 —                                                                                                        |                                  |                                          | _              |
| moist, brown, fin                                                        | Sand with Clay;<br>e to coarse grained<br>and                                                      | (SP-<br>SC)                               | - 10<br>- 11                                                                                                                                             |      | SPT                  | 22             | 33          | 40           |                      | 73      | 10.5                                                                                                       |                                  |                                          | -              |
| <b>D</b> 1 <b>D</b> 4                                                    |                                                                                                    |                                           |                                                                                                                                                          |      | SPT                  | 35             | 50/5        |              |                      | 50      | 12                                                                                                         |                                  |                                          |                |
| End Depth<br>Types of Soil                                               |                                                                                                    | * C                                       | ompl                                                                                                                                                     | eted | at 12.001            | n              |             | N            | Value                |         | ınd: Dry                                                                                                   |                                  |                                          | ٦              |
|                                                                          |                                                                                                    | 0                                         | to 4                                                                                                                                                     |      | 4 to                 | 10             |             |              | o 30                 | -       | 30 to 50                                                                                                   | > 50                             |                                          | 1              |
| Granular Soil                                                            | Compactness                                                                                        | Ve                                        | ery Lo                                                                                                                                                   | ose  | Loo                  | se             |             | Med.         | Dens                 | e       | Dense                                                                                                      | Very Dens                        | e                                        | _              |
| Cohesive Soil                                                            | Consistency                                                                                        |                                           | <b>to 2</b><br>y Soft                                                                                                                                    | t    | 2 to<br>Sot          |                |             |              | <b>o 8</b><br>. Soft |         | 8 to 16<br>Stiff                                                                                           | 16 to 32<br>Very Stiff           | > 32                                     | _              |
| Notes:                                                                   |                                                                                                    |                                           |                                                                                                                                                          |      |                      |                |             | Med          | . Soft               |         | Stiff                                                                                                      | Very Stiff                       | Hard                                     |                |
|                                                                          | oring at 20.0 m. and at selected                                                                   |                                           | condu                                                                                                                                                    | cted | upto dept            | h of 12        | 2 m.        |              |                      |         |                                                                                                            |                                  |                                          |                |
| 3. Boring backt<br>4. Emperical R<br>Ncr = 1.5 N for<br>Ncr = 1.75 N for | filled with auger<br>elation Between<br>c depths upto 3.0<br>or depths 3.00 m<br>or depths greater | cuttings u<br>DCPT (N<br>0 m<br>to 6.00 m | cr) an                                                                                                                                                   |      |                      | ues:           |             |              |                      |         |                                                                                                            |                                  | ~                                        |                |
| Where,<br>Ncr = recorded<br>N = SPT values                               |                                                                                                    |                                           |                                                                                                                                                          |      |                      |                |             | \            |                      |         | N.                                                                                                         | Nort                             | A.                                       |                |
|                                                                          |                                                                                                    |                                           |                                                                                                                                                          |      |                      | TRA            | ACEABLE MEA | ASUREMENTS   | ~                    |         |                                                                                                            | eotechnical I<br>ISc. Virginia T | -                                        | racea          |

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

| Traceable Measurements Pvt. Ltd   |               |           |         |                                   |             |                                      |  |  |  |  |  |  |
|-----------------------------------|---------------|-----------|---------|-----------------------------------|-------------|--------------------------------------|--|--|--|--|--|--|
| Lalitpur-2, Sanepa, Nepal         |               |           |         |                                   |             |                                      |  |  |  |  |  |  |
| Determination of Moisture Content |               |           |         |                                   |             |                                      |  |  |  |  |  |  |
| Project :                         |               | 0         |         | s & updated lir<br>ne Route Align | 0           |                                      |  |  |  |  |  |  |
| Location :                        | T17/1N        |           |         |                                   |             |                                      |  |  |  |  |  |  |
| Sample Description :              | SPT Samp      | le        |         |                                   |             |                                      |  |  |  |  |  |  |
| Bore Hole No :                    | 1             | Date Of S | ampling | 17/09/2079                        |             |                                      |  |  |  |  |  |  |
| Lab Ref No.                       |               | Date Of T | est     | 05/10/2079                        |             |                                      |  |  |  |  |  |  |
| N                                 | ATURAL MOISTU | JRE CONT  | ENT     |                                   |             |                                      |  |  |  |  |  |  |
| Depth m.                          |               | 0-1.5m    |         |                                   | 1.5m - 4.5m |                                      |  |  |  |  |  |  |
| Container No.                     | 109           | 76        | 104     | 7                                 | 51          | 78                                   |  |  |  |  |  |  |
| Weight of Wet Soil + Container,g  | 25.1          | 25.6      | 26.7    | 40.7                              | 41.6        | 40.6                                 |  |  |  |  |  |  |
| Weight of Dry Soil + Container,g  | 22.3          | 23.0      | 23.7    | 36.1                              | 35.4        | 35.0                                 |  |  |  |  |  |  |
| Weight of Water, g                | 2.8           | 2.6       | 3.0     | 4.6                               | 6.2         | 5.6                                  |  |  |  |  |  |  |
| Weight of container, g            | 12.2          | 13.1      | 12.5    | 17.7                              | 13.0        | 11.7                                 |  |  |  |  |  |  |
| Weight of Dry Soil, g             | 10.1          | 9.9       | 11.2    | 18.4                              | 22.4        | 23.3                                 |  |  |  |  |  |  |
| Water Content, W %                | 27.7          | 26.3      | 26.8    | 25.0                              | 27.7        | 24.0                                 |  |  |  |  |  |  |
| Average Water Content, W %        |               | 26.9      |         |                                   | 25.6        |                                      |  |  |  |  |  |  |
|                                   | Bore Hole     | e No :-01 |         | 11                                |             |                                      |  |  |  |  |  |  |
| Depth m.                          |               | 4.5m-6m   |         |                                   | 6m-7.5m     |                                      |  |  |  |  |  |  |
| Container No.                     | 48            | 117       | 0       | 203                               | 57          | 15                                   |  |  |  |  |  |  |
| Weight of Wet Soil + Container,g  | 32.4          | 31.1      | 32.9    | 31.5                              | 33.4        | 33.5                                 |  |  |  |  |  |  |
| Weight of Dry Soil + Container,g  | 28.2          | 27.5      | 29.0    | 27.8                              | 29.9        | 30.1                                 |  |  |  |  |  |  |
| Weight of Water, g                | 4.2           | 3.6       | 3.9     | 3.7                               | 3.5         | 3.4                                  |  |  |  |  |  |  |
| Weight of container, g            | 11.3          | 13.2      | 14.1    | 11.0                              | 14.9        | 14.4                                 |  |  |  |  |  |  |
| Weight of Dry Soil, g             | 16.9          | 14.3      | 14.9    | 16.8                              | 15.0        | 15.7                                 |  |  |  |  |  |  |
| Water Content, W %                | 24.9          | 25.2      | 26.2    | 22.0                              | 23.3        | 21.7                                 |  |  |  |  |  |  |
| Average Water Content, W %        |               | 25.4      |         |                                   | 22.3        |                                      |  |  |  |  |  |  |
|                                   | Bore Hole     | e No :-01 |         | 11                                |             | Average Water Content, W % 25.4 22.3 |  |  |  |  |  |  |

|                                  | Bore Hole   | e No :-01 |      |      |      |      |
|----------------------------------|-------------|-----------|------|------|------|------|
| Depth m.                         | 7.5m-9m 12m |           |      |      |      |      |
| Container No.                    | 43          | 45        | 68   | 64   | 26   | 218  |
| Weight of Wet Soil + Container,g | 30.4        | 31.6      | 31.6 | 45.0 | 46.6 | 46.6 |
| Weight of Dry Soil + Container,g | 27.3        | 27.9      | 29.0 | 38.8 | 39.4 | 40.2 |
| Weight of Water, g               | 3.1         | 3.7       | 2.6  | 6.2  | 7.2  | 6.4  |
| Weight of container, g           | 12.4        | 12.7      | 12.5 | 11.6 | 12.5 | 12.6 |
| Weight of Dry Soil, g            | 14.9        | 15.2      | 16.5 | 27.2 | 26.9 | 27.6 |
| Water Content, W %               | 20.8        | 24.3      | 15.8 | 22.8 | 26.8 | 23.2 |
| Average Water Content, W %       |             | 20.3      |      |      | 24.2 |      |

| Tested By:             | Verified By:                                  |
|------------------------|-----------------------------------------------|
|                        | Martal.                                       |
| TRACEABLE MEASUREMENTS | Geotechnical Engineer, Traceable Measurements |
|                        | MSc. Virginia Tech                            |

| Traceable Measurements Pvt. Ltd<br>Lalitpur-2, Sanepa, Nepal                                                                                      |                                        |                                          |                          |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|--------------------------|--|--|--|
| TEST FOR SPECIFIC GRAVITY OF SOIL                                                                                                                 |                                        |                                          |                          |  |  |  |
| Project Soil Investigation Works of Services & updated line Design for 30 km of<br>Changes in 400kv Transmission Line Route Aligment of MCA-Nepal |                                        |                                          |                          |  |  |  |
| Client Name : Mo                                                                                                                                  | CA-N                                   | SAMPLE LABEL I                           | NFORMATION               |  |  |  |
| Borehole No: : T17/1N                                                                                                                             |                                        |                                          |                          |  |  |  |
| Description of Sample<br>100 % pass through 4.75 m                                                                                                | Date of Sampling : 17/09/2079          |                                          |                          |  |  |  |
|                                                                                                                                                   |                                        | Depth                                    | 0-1.5m                   |  |  |  |
| Test No                                                                                                                                           |                                        | 1                                        | 2                        |  |  |  |
| Wt. of Pycnometer, gm (A)                                                                                                                         |                                        | 96.5                                     | 100.4                    |  |  |  |
| Wt. of Pycnometer + Sampl                                                                                                                         |                                        | 116.5                                    | 120.4                    |  |  |  |
| Wt. of Pycnometer + Sampl                                                                                                                         |                                        | 220.6                                    | 224.6                    |  |  |  |
| Wt. of Pycnometer + Water                                                                                                                         |                                        | 208.5                                    | 212.6<br>2.500           |  |  |  |
| Specific Gravity = (B-A)/((D-<br>Average Value                                                                                                    | -А)-(С-В))                             | 2.532                                    | 2.516                    |  |  |  |
|                                                                                                                                                   | TEST FOR SPECIFIC GRA                  | lated line Design for                    |                          |  |  |  |
| · Ch                                                                                                                                              | nanges in 400kv Transmission Line Rout | •                                        | •                        |  |  |  |
|                                                                                                                                                   | CA-N<br> 7/1N                          | SAMPLE LABEL I                           | NFORMATION_              |  |  |  |
| Description of Sample<br>100 % pass through 4.75 m                                                                                                | m                                      | Date of Sampling :<br>Date of Testing :- | 17/09/2079<br>06/10/2079 |  |  |  |
| T+ N -                                                                                                                                            |                                        | Depth                                    | 1.5m - 4.5m              |  |  |  |
| Test No                                                                                                                                           |                                        | 1                                        | 2                        |  |  |  |
| Wt. of Pycnometer, gm (A)                                                                                                                         |                                        | <u>96.4</u><br>116.4                     | 101<br>121.0             |  |  |  |
| Wt. of Pycnometer + Sampl<br>Wt. of Pycnometer + Sampl                                                                                            |                                        | 220.4                                    | 224.5                    |  |  |  |
| Wt. of Pycnometer + Water                                                                                                                         |                                        | 220.4                                    | 212.7                    |  |  |  |
| Specific Gravity = (B-A)/((D-                                                                                                                     |                                        | 2.500                                    | 2.439                    |  |  |  |
| Average Value                                                                                                                                     | -A)-(C-B))                             | 2.500                                    | 2.470                    |  |  |  |
| <u> </u>                                                                                                                                          |                                        |                                          |                          |  |  |  |
|                                                                                                                                                   | Tested By :                            |                                          | Verified By:             |  |  |  |
| Norton.                                                                                                                                           |                                        |                                          |                          |  |  |  |
|                                                                                                                                                   | TRACEABLE MEASUREMEN'S                 |                                          |                          |  |  |  |

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

| Traceable Measurements Pvt. Ltd                                         |                                                                |                              |  |  |  |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------|--|--|--|--|
| Lalitpur-2, Sanepa, Nepal                                               |                                                                |                              |  |  |  |  |
| TEST FOR SPECIFIC GRA                                                   | VITY OF SOIL                                                   |                              |  |  |  |  |
| Soil Investigation Works of Services & updated line Design for 30 km of |                                                                |                              |  |  |  |  |
| Project : Changes in 400kv Transmission Line Rou                        | Changes in 400kV transmission Line Route Aligment of MCA-Nepal |                              |  |  |  |  |
| Client Name : MCA-N                                                     | <u>SAMPLE LABEL I</u>                                          | NFORMATION                   |  |  |  |  |
| Borehole No: : T17/1N                                                   |                                                                |                              |  |  |  |  |
|                                                                         | Date of Sampling :                                             | 17/09/2079                   |  |  |  |  |
| Description of Sample Date of Testing :- 06/10/2079                     |                                                                |                              |  |  |  |  |
| 100 % pass through 4.75 mm                                              |                                                                |                              |  |  |  |  |
|                                                                         | Depth                                                          | 4.5m - 6m                    |  |  |  |  |
| Test No                                                                 | 1                                                              | 2                            |  |  |  |  |
| Wt. of Pycnometer, gm (A)                                               | 96.7                                                           | 100.2                        |  |  |  |  |
| Wt. of Pycnometer + Sample, gm (B)                                      | 116.7                                                          | 120.2                        |  |  |  |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                              | 220.6                                                          | 224.3                        |  |  |  |  |
| Wt. of Pycnometer + Water, gm (D)                                       | 208.4                                                          | 211.8                        |  |  |  |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                                  | 2.564                                                          | 2.667                        |  |  |  |  |
| Average Value                                                           |                                                                | 2.615                        |  |  |  |  |
|                                                                         |                                                                |                              |  |  |  |  |
| Lalitpur-2, Sanepa,                                                     |                                                                |                              |  |  |  |  |
| TEST FOR SPECIFIC GRA                                                   |                                                                |                              |  |  |  |  |
| Project Soil Investigation Works of Services & upo                      | -                                                              |                              |  |  |  |  |
| Changes in 400kv Transmission Line Rou                                  | te Aligment of MCA-N                                           | Nepal                        |  |  |  |  |
| Client Name : MCA-N                                                     | <u>SAMPLE LABEL I</u>                                          | NFORMATION                   |  |  |  |  |
| Borehole No: : T17/1N                                                   |                                                                |                              |  |  |  |  |
|                                                                         | Date of Sampling :                                             | 17/09/2079                   |  |  |  |  |
| Description of Sample                                                   | Date of Testing :-                                             | 06/10/2079                   |  |  |  |  |
| 100 % pass through 4.75 mm                                              |                                                                |                              |  |  |  |  |
|                                                                         | Depth                                                          | 6m - 7.5m                    |  |  |  |  |
| Test No                                                                 | 1                                                              | 2                            |  |  |  |  |
| Wt. of Pycnometer, gm (A)                                               | 96.7                                                           | 100.1                        |  |  |  |  |
| Wt. of Pycnometer + Sample, gm (B)                                      | 116.7                                                          | 120.0                        |  |  |  |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                              | 220.6                                                          | 224.1                        |  |  |  |  |
| Wt. of Pycnometer + Water, gm (D)                                       | 208.2                                                          | 211.7                        |  |  |  |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                                  | 2.632                                                          | 2.653                        |  |  |  |  |
| Average Value                                                           |                                                                | 2.642                        |  |  |  |  |
|                                                                         |                                                                |                              |  |  |  |  |
| Tested By :                                                             |                                                                | Verified By:                 |  |  |  |  |
| Morton.                                                                 |                                                                |                              |  |  |  |  |
| TRACEABLE MEASUREMEN'S                                                  | Geotechnical Engir<br>MSc. Virginia Tech                       | neer, Traceable Measurements |  |  |  |  |

MSc. Virginia Tech

| Traceable Measurements Pvt. Ltd                                                                                                                     |                           |                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|--|--|
| Lalitpur-2, Sanepa, Nepal                                                                                                                           |                           |                              |  |  |
| TEST FOR SPECIFIC GRAVITY OF SOIL                                                                                                                   |                           |                              |  |  |
| Project : Soil Investigation Works of Services & updated line Design for 30 km of<br>Changes in 400kv Transmission Line Route Aligment of MCA-Nepal |                           |                              |  |  |
| Client Name : MCA-N                                                                                                                                 | SAMPLE LABEL I            | •                            |  |  |
| Borehole No: : T17/1N                                                                                                                               |                           |                              |  |  |
|                                                                                                                                                     | Date of Sampling :        | 17/09/2079                   |  |  |
| Description of Sample                                                                                                                               | Date of Testing :-        | 06/10/2079                   |  |  |
| 100 % pass through 4.75 mm                                                                                                                          |                           |                              |  |  |
|                                                                                                                                                     | Depth                     | 7.5 m - 9m                   |  |  |
| Test No                                                                                                                                             | 1                         | 2                            |  |  |
| Wt. of Pycnometer, gm (A)                                                                                                                           | 100.1                     | 96.7                         |  |  |
| Wt. of Pycnometer + Sample, gm (B)                                                                                                                  | 120.0                     | 116.7                        |  |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                                                                                                          | 224.0                     | 220.6                        |  |  |
| Wt. of Pycnometer + Water, gm (D)                                                                                                                   | 211.5                     | 208.1                        |  |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                                                                                                              | 2.689                     | 2.667                        |  |  |
| Average Value                                                                                                                                       |                           | 2.678                        |  |  |
|                                                                                                                                                     | II                        |                              |  |  |
| Lalitpur-2, Sar<br>TEST FOR SPECIFIC                                                                                                                | • • •                     |                              |  |  |
| Project<br>Client Name<br>Borehole No:<br>Project<br>Soil Investigation Works of Services<br>Changes in 400kv Transmission Lin<br>MCA-N<br>T17/1N   | & updated line Design for | Nepal                        |  |  |
|                                                                                                                                                     | Date of Sampling :        | 17/09/2079                   |  |  |
| Description of Sample                                                                                                                               | Date of Testing :-        | 06/10/2079                   |  |  |
| 100 % pass through 4.75 mm                                                                                                                          | Date of Footing           |                              |  |  |
|                                                                                                                                                     | Depth                     | 9m - 12m                     |  |  |
| Test No                                                                                                                                             | 1                         | 2                            |  |  |
| Wt. of Pycnometer, gm (A)                                                                                                                           | 96.7                      | 100.2                        |  |  |
| Wt. of Pycnometer + Sample, gm (B)                                                                                                                  | 116.9                     | 120.0                        |  |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                                                                                                          | 220.6                     | 224.0                        |  |  |
| Wt. of Pycnometer + Water, gm (D)                                                                                                                   | 208.0                     | 211.5                        |  |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                                                                                                              | 2.658                     | 2.712                        |  |  |
| Average Value                                                                                                                                       |                           | 2.685                        |  |  |
|                                                                                                                                                     |                           |                              |  |  |
| Tested By :                                                                                                                                         |                           | Verified By:                 |  |  |
|                                                                                                                                                     | Norto                     |                              |  |  |
| TRACEABLE MEASUREMEN'S                                                                                                                              | Geotechnical Engi         | neer, Traceable Measurements |  |  |

MSc. Virginia Tech

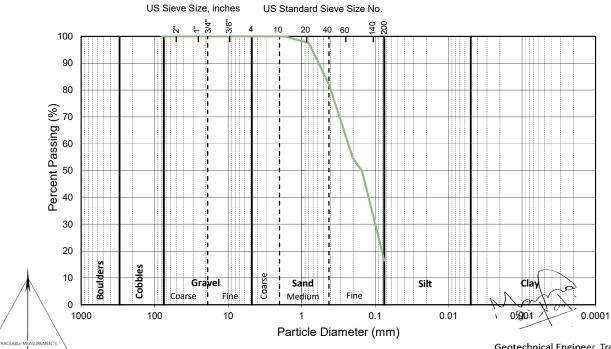


#### **Project Information**

| Project Name:                                                                                                                                                                                                                                                        | MCA-Nepal                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Project Number:                                                                                                                                                                                                                                                      |                                           |
| Location:                                                                                                                                                                                                                                                            | T17/1N                                    |
| Sample Information                                                                                                                                                                                                                                                   |                                           |
| Borehole/Test Pit:                                                                                                                                                                                                                                                   | BH-01                                     |
| Sample #:                                                                                                                                                                                                                                                            |                                           |
| Depth:                                                                                                                                                                                                                                                               | 0-1.5m                                    |
| Sample type:                                                                                                                                                                                                                                                         |                                           |
| Sampled by:                                                                                                                                                                                                                                                          |                                           |
| Laboratory Comments/0                                                                                                                                                                                                                                                | Observations                              |
|                                                                                                                                                                                                                                                                      |                                           |
| Testing Information                                                                                                                                                                                                                                                  |                                           |
| <b>Testing Information</b><br>Pan ID                                                                                                                                                                                                                                 |                                           |
| -                                                                                                                                                                                                                                                                    | (g)                                       |
| Pan ID                                                                                                                                                                                                                                                               |                                           |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)                                                                                                                                                                                |                                           |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)                                                                                                                                                        |                                           |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)                                                                                                                             |                                           |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)                                                                                                    |                                           |
| Pan ID<br>Mass of moist soil + pan (g)<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter                                                                             | 263.60                                    |
| Pan ID<br>Mass of moist soil + pan (g)<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter<br>Coarser than Gravel%                                                     | 0 263.60                                  |
| Pan ID<br>Mass of moist soil + pan (g)<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter                                                                             | 263.60                                    |
| Pan ID<br>Mass of moist soil + pan (g)<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%                                   | 0 263.60<br>263.60<br>0 0                 |
| Pan ID<br>Mass of moist soil + pan (g)<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%                          | 0 263.60<br>263.60<br>0<br>0<br>84        |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (<br>Mass of dry soil (<br>Mass of dry soil (<br>Mass of washed soil (<br>Mass loss in wash (<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%                       | 0<br>263.60<br>0<br>0<br>84<br>16         |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of dry soil (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%<br>D60, mm: | 0<br>263.60<br>0<br>0<br>84<br>16<br>0.23 |
| Pan ID<br>Mass of moist soil + pan (<br>Mass of dry soil + pan (<br>Mass of dry soil (<br>Mass of dry soil (<br>Mass of washed soil (<br>Mass loss in wash (<br>Gravel%<br>Sand%<br>Fines%<br>D60, mm:<br>D30, mm:                                                   | 0<br>263.60<br>0<br>0<br>84<br>16<br>0.23 |

| Laboratory information |                                 |  |  |  |
|------------------------|---------------------------------|--|--|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |  |  |
| Tested By:             |                                 |  |  |  |
| Reviewed By:           |                                 |  |  |  |
| Test Date:             | 7/10/2079                       |  |  |  |
| Report Date:           |                                 |  |  |  |

# Preparation Method: Oven Dry Air Dr


Laboratory Information



| S.N      | (mm)  | Wt Ret | % Ret | Cum %<br>Ret | % Pass |
|----------|-------|--------|-------|--------------|--------|
| 1        | 80    | 0.00   | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.00   | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.00   | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.00   | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 0.00   | 0.00  | 0.00         | 100.00 |
| 6        | 4.75  | 0.00   | 0.00  | 0.00         | 100.00 |
| 7        | 2.36  | 0.0    | 0.00  | 0.00         | 100.00 |
| 8        | 1.70  | 0.0    | 0.00  | 0.00         | 100.00 |
| 9        | 0.8   | 6.6    | 2.50  | 2.50         | 97.50  |
| 10       | 0.425 | 40.3   | 15.29 | 17.79        | 82.21  |
| 11       | 0.20  | 73.0   | 27.69 | 45.49        | 54.51  |
| 12       | 0.15  | 12.5   | 4.74  | 50.23        | 49.77  |
| 13       | 0.075 | 87.8   | 33.31 | 83.54        | 16.46  |
| Pan      |       | 43.4   |       |              |        |
| Tot Pan  |       | 43.40  | 16.46 | 100.00       | 0.00   |
| Fineness | Mod.  |        |       | 1.16         |        |

Classification of Soils as per USCS, ASTM designation D 2487-06

Clayey Sand (SC)



Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

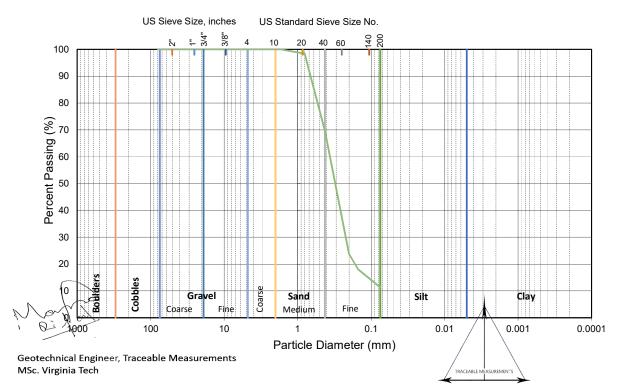
# 

#### **Project Information**

| Project Name:                           |         | MCA-Nepal   |
|-----------------------------------------|---------|-------------|
| Project Number:                         |         |             |
| Location:                               | T17/1N  |             |
| Sample Information                      |         |             |
| Borehole/Test Pit:                      | BH-01   |             |
| Sample #:                               |         |             |
| Depth:                                  |         | 1.5m - 4.5m |
| Sample type:                            |         |             |
| Sampled by:                             |         |             |
| Laboratory Comments/                    | Observa | tions       |
| <b>Testing Information</b><br>Pan ID    |         |             |
| Mass of moist soil + pan (              | (g)     |             |
| Mass of dry soil + pan (g)              |         |             |
| Mass of pan (g)                         |         |             |
| Mass of dry soil (g)                    |         | 329.30      |
| Mass of washed soil (g)                 |         |             |
| Mass loss in wash (g) Summary Parameter |         |             |
| Coarser than Gravel%                    | Т       | 0           |
| Gravel%                                 |         | 0           |
| Sand%                                   |         | 89          |
| Fines%                                  |         | 11          |
| D60, mm:                                |         | 0.36        |
| D30, mm:                                |         | 0.22        |
| D10, mm:                                |         |             |
| Cc:                                     |         |             |
| Cu:                                     |         |             |

| Eaboratory informe | 20011                           |
|--------------------|---------------------------------|
| Lab Name:          | Traceable Measurement Pvt. Ltd. |
| Tested By:         |                                 |
| Reviewed By:       |                                 |
| Test Date:         | 07/10/2079                      |
| Report Date:       |                                 |

# Preparation Method: Oven Dry Air Dry


Laboratory Information



| S.N      | (mm)  | Wt Ret  | % Ret | Cum %<br>Ret | % Pass |
|----------|-------|---------|-------|--------------|--------|
| 1        | 80    | 0.0     | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.0     | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 0.0     | 0.00  | 0.00         | 100.00 |
| 6        | 4.75  | 0.0     | 0.00  | 0.00         | 100.00 |
| 7        | 2.36  | 0.000   | 0.00  | 0.00         | 100.00 |
| 8        | 1.70  | 0.000   | 0.00  | 0.00         | 100.00 |
| 9        | 0.8   | 5.200   | 1.58  | 1.58         | 98.42  |
| 10       | 0.425 | 95.300  | 28.94 | 30.52        | 69.48  |
| 11       | 0.20  | 150.300 | 45.64 | 76.16        | 23.84  |
| 12       | 0.15  | 19.200  | 5.83  | 81.99        | 18.01  |
| 13       | 0.075 | 21.900  | 6.65  | 88.64        | 11.36  |
| Pan      |       | 37.400  |       |              |        |
| Tot Pan  |       | 37.40   | 11.36 | 100.00       | 0.00   |
| Fineness | Mod.  |         |       | 1.90         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

Poorly Graded Sand with Fat Clay (SP-SC)

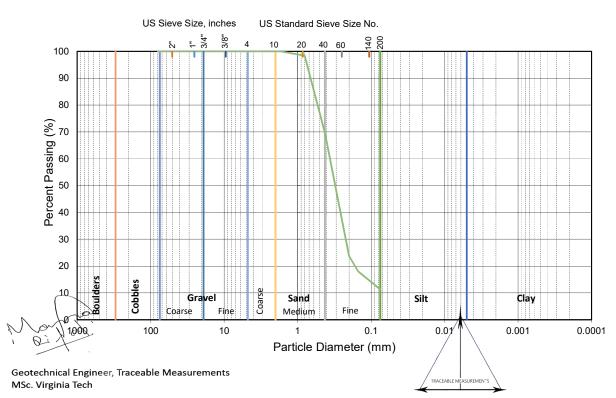




#### **Project Information**

| Project information        |           |        |  |
|----------------------------|-----------|--------|--|
| Project Name:              | MCA-Nepal |        |  |
| Project Number:            |           |        |  |
| Location:                  |           | T17/1N |  |
| Sample Information         |           |        |  |
| Borehole/Test Pit:         | BH-01     |        |  |
| Sample #:                  |           |        |  |
| Depth:                     | 4.5m-6m   |        |  |
| Sample type:               |           |        |  |
| Sampled by:                |           |        |  |
| Laboratory Comments/0      | Observa   | ations |  |
| Testing Information Pan ID |           |        |  |
| Mass of moist soil + pan ( | a)        |        |  |
| Mass of dry soil + pan (g) |           |        |  |
| Mass of pan (g)            |           |        |  |
| Mass of dry soil (g)       |           | 314.70 |  |
| Mass of washed soil (g)    |           |        |  |
| Mass loss in wash (g)      |           |        |  |
| Summary Parameter          |           |        |  |
| Coarser than Gravel%       |           | 0      |  |
| Gravel%                    |           | 0      |  |
| Sand%                      |           | 86     |  |
| Fines%                     |           | 0.32   |  |
| D60, mm:                   |           | 0.32   |  |
| D30, mm:<br>D10, mm:       |           | 0.14   |  |
| Cc:                        |           |        |  |
| Cu:                        |           |        |  |
|                            |           |        |  |

| Laboratory Information |                                 |  |  |
|------------------------|---------------------------------|--|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |  |
| Tested By:             |                                 |  |  |
| Reviewed By:           |                                 |  |  |
| Test Date:             | 07/10/2079                      |  |  |
| Report Date:           |                                 |  |  |


# Preparation Method: Oven Dry Air Dry



| S.N      | (mm)  | Wt Ret  | % Ret | Cum %<br>Ret | % Pass |
|----------|-------|---------|-------|--------------|--------|
| 1        | 80    | 0.0     | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.0     | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 0.0     | 0.00  | 0.00         | 100.00 |
| 6        | 4.75  | 0.0     | 0.00  | 0.00         | 100.00 |
| 7        | 2.36  | 0.000   | 0.00  | 0.00         | 100.00 |
| 8        | 1.70  | 0.100   | 0.03  | 0.03         | 99.97  |
| 9        | 0.8   | 8.600   | 2.73  | 2.76         | 97.24  |
| 10       | 0.425 | 75.100  | 23.86 | 26.63        | 73.37  |
| 11       | 0.20  | 106.600 | 33.87 | 60.50        | 39.50  |
| 12       | 0.15  | 21.400  | 6.80  | 67.30        | 32.70  |
| 13       | 0.075 | 60.300  | 19.16 | 86.46        | 13.54  |
| Pan      |       | 42.600  |       |              |        |
| Tot Pan  |       | 42.60   | 13.54 | 100.00       | 0.00   |
| Fineness | Mod.  |         |       | 1.57         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

Poorly Graded Sand with Elastic Silt (SP-SM)

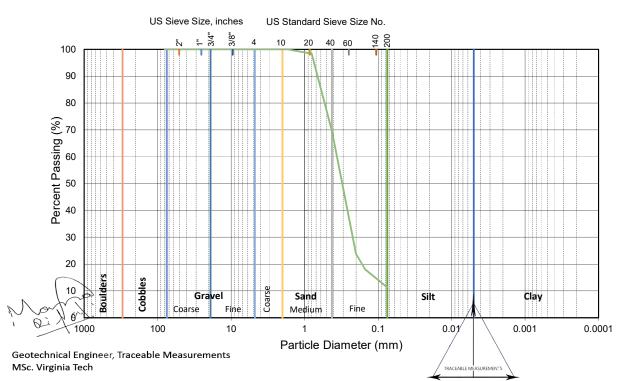




#### **Project Information**

| Project information                                                                                                                                                                                                                                                            |        |                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------|--|
| Project Name:                                                                                                                                                                                                                                                                  |        | MCA-Nepal                          |  |
| Project Number:                                                                                                                                                                                                                                                                |        |                                    |  |
| Location:                                                                                                                                                                                                                                                                      |        | T17/1N                             |  |
| Sample Information                                                                                                                                                                                                                                                             | •      |                                    |  |
| Borehole/Test Pit:                                                                                                                                                                                                                                                             | BH-01  |                                    |  |
| Sample #:                                                                                                                                                                                                                                                                      |        |                                    |  |
| Depth:                                                                                                                                                                                                                                                                         |        |                                    |  |
| Sample type:                                                                                                                                                                                                                                                                   |        |                                    |  |
| Sampled by:                                                                                                                                                                                                                                                                    |        |                                    |  |
| Laboratory Comments/                                                                                                                                                                                                                                                           | Observ | ations                             |  |
|                                                                                                                                                                                                                                                                                |        |                                    |  |
| Testing Information                                                                                                                                                                                                                                                            |        |                                    |  |
| Testing Information<br>Pan ID                                                                                                                                                                                                                                                  |        |                                    |  |
|                                                                                                                                                                                                                                                                                | (g)    |                                    |  |
| Pan ID                                                                                                                                                                                                                                                                         |        |                                    |  |
| Pan ID<br>Mass of moist soil + pan                                                                                                                                                                                                                                             |        |                                    |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g<br>Mass of pan (g)<br>Mass of dry soil (g)                                                                                                                                                                     |        | 269.60                             |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)                                                                                                                                          |        | 269.60                             |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)                                                                                                                 |        | 269.60                             |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter                                                                                            |        |                                    |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter<br>Coarser than Gravel%                                                                    |        | 0                                  |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%                                                 |        |                                    |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter<br>Coarser than Gravel%                                                                    |        | 0                                  |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%                              |        | 0<br>0<br>100                      |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%                                        |        | 0<br>0<br>100<br>0                 |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g)<br>Mass of dry soil (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%<br>D60, mm:             |        | 0<br>0<br>100<br>0<br>0.31         |  |
| Pan ID<br>Mass of moist soil + pan<br>Mass of dry soil + pan (g)<br>Mass of dry soil (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%<br>D60, mm:<br>D30, mm: |        | 0<br>0<br>100<br>0<br>0.31<br>0.24 |  |

| Laboratory Information |                                 |  |  |  |
|------------------------|---------------------------------|--|--|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |  |  |
| Tested By:             |                                 |  |  |  |
| Reviewed By:           |                                 |  |  |  |
| Test Date:             | 07/10/2079                      |  |  |  |
| Report Date:           |                                 |  |  |  |


# Preparation Method: Oven Dry Air Dry



| S.N      | (mm)  | Wt Ret  | % Ret | Cum %<br>Ret | % Pass |
|----------|-------|---------|-------|--------------|--------|
| 1        | 80    | 0.0     | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.0     | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 0.0     | 0.00  | 0.00         | 100.00 |
| 6        | 4.75  | 0.0     | 0.00  | 0.00         | 100.00 |
| 7        | 2.36  | 0.000   | 0.00  | 0.00         | 100.00 |
| 8        | 1.70  | 0.200   | 0.07  | 0.07         | 99.93  |
| 9        | 0.8   | 1.100   | 0.41  | 0.48         | 99.52  |
| 10       | 0.425 | 10.900  | 4.04  | 4.53         | 95.47  |
| 11       | 0.20  | 230.500 | 85.50 | 90.02        | 9.98   |
| 12       | 0.15  | 21.100  | 7.83  | 97.85        | 2.15   |
| 13       | 0.075 | 4.600   | 1.71  | 99.55        | 0.45   |
| Pan      |       | 1.200   |       |              |        |
| Tot Pan  |       | 1.20    | 0.45  | 100.00       | 0.00   |
| Fineness | Mod.  |         |       | 1.93         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

#### Poorly Graded Sand (SP)

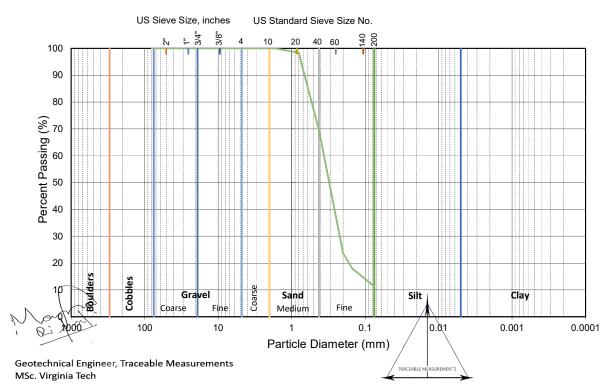




### **Project Information**

| Project Information        |              |
|----------------------------|--------------|
| Project Name:              | MCA-Nepal    |
| Project Number:            |              |
| Location:                  | T17/1N       |
| Sample Information         |              |
| Borehole/Test Pit:         | BH-01        |
| Sample #:                  |              |
| Depth:                     | 7.5m - 9m    |
| Sample type:               |              |
| Sampled by:                |              |
| Laboratory Comments/0      | Observations |
| Testing Information        |              |
| Pan ID                     |              |
| Mass of moist soil + pan ( | a)           |
| Mass of dry soil + pan (g) |              |
| Mass of pan (g)            |              |
| Mass of dry soil (g)       | 166.70       |
| Mass of washed soil (g)    |              |
| Mass loss in wash (g)      |              |
| Summary Parameter          |              |
| Coarser than Gravel%       | 0            |
| Gravel%                    | 13           |
| Sand%                      | 63           |
| Fines%                     | 24           |
| D60, mm:                   | 0.15         |
| D30, mm:                   | 0.08         |
| D10, mm:                   | #VALUE!      |
| Cc:<br>Cu:                 | #VALUE!      |
| Gu.                        | #VALUE!      |

| Laboratory Informa | ation                           |
|--------------------|---------------------------------|
| Lab Name:          | Traceable Measurement Pvt. Ltd. |
| Tested By:         |                                 |
| Reviewed By:       |                                 |
| Test Date:         | 07/10/2079                      |
| Report Date:       |                                 |


# Preparation Method: Oven Dry Air Dry

|        | x     |              |   |
|--------|-------|--------------|---|
| 't Ret | % Ret | Cum %<br>Ret | 9 |
| 0.0    | 0.00  | 0.00         | 1 |
| 0.0    | 0.00  | 0.00         | 1 |
| 0.0    | 0.00  | 0.00         | 1 |
| 0.0    | 0.00  | 0.00         | 1 |
| 0.0    | 0.00  | 0.00         | 1 |

| S.N      | (mm)  | Wt Ret | % Ret | Cum %<br>Ret | % Pass |
|----------|-------|--------|-------|--------------|--------|
| 1        | 80    | 0.0    | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.0    | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.0    | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.0    | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 0.0    | 0.00  | 0.00         | 100.00 |
| 6        | 4.75  | 6.9    | 4.14  | 4.14         | 95.86  |
| 7        | 2.36  | 14.900 | 8.94  | 13.08        | 86.92  |
| 8        | 1.70  | 5.500  | 3.30  | 16.38        | 83.62  |
| 9        | 0.8   | 13.000 | 7.80  | 24.18        | 75.82  |
| 10       | 0.425 | 7.200  | 4.32  | 28.49        | 71.51  |
| 11       | 0.20  | 10.900 | 6.54  | 35.03        | 64.97  |
| 12       | 0.15  | 6.500  | 3.90  | 38.93        | 61.07  |
| 13       | 0.075 | 61.200 | 36.71 | 75.64        | 24.36  |
| Pan      |       | 40.600 |       |              |        |
| Tot Pan  |       | 40.60  | 24.36 | 100.00       | 0.00   |
| Fineness | Mod.  |        |       | 1.60         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

### Clayey Sand with Gravel (SC)

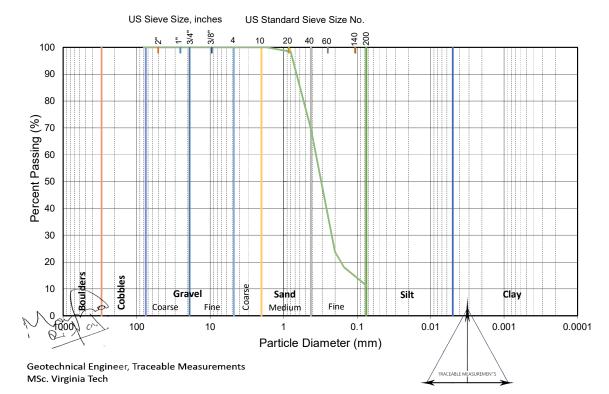




### **Project Information**

| Project Name:                                                                                                                                                                                                                                              |         |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------|
| · · - <b>j</b> · · · · · · · · · ·                                                                                                                                                                                                                         |         | MCA-Nepal                         |
| Project Number:                                                                                                                                                                                                                                            |         |                                   |
| Location:                                                                                                                                                                                                                                                  |         | T17/1N                            |
| Sample Information                                                                                                                                                                                                                                         |         |                                   |
| Borehole/Test Pit:                                                                                                                                                                                                                                         |         | BH-01                             |
| Sample #:                                                                                                                                                                                                                                                  |         |                                   |
| Depth:                                                                                                                                                                                                                                                     |         | 9m - 12m                          |
| Sample type:                                                                                                                                                                                                                                               |         |                                   |
| Sampled by:                                                                                                                                                                                                                                                |         |                                   |
| Laboratory Comments/0                                                                                                                                                                                                                                      | Observa | ations                            |
|                                                                                                                                                                                                                                                            |         |                                   |
| Testing Information                                                                                                                                                                                                                                        |         |                                   |
|                                                                                                                                                                                                                                                            |         |                                   |
| Pan ID                                                                                                                                                                                                                                                     |         |                                   |
| Pan ID<br>Mass of moist soil + pan (                                                                                                                                                                                                                       | (g)     |                                   |
|                                                                                                                                                                                                                                                            |         |                                   |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)                                                                                                                                                                                |         |                                   |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)                                                                                                                                                        |         | 161.90                            |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)                                                                                                                             |         | 161.90                            |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)                                                                                                    |         | 161.90                            |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter                                                                               |         |                                   |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)                                                                                                    |         | 0                                 |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%                                                |         |                                   |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%                                     |         | 0                                 |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%                            |         | 0<br>0<br>92                      |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br><b>Summary Parameter</b><br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%                  |         | 0<br>0<br>92<br>8                 |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter<br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%<br>D60, mm:             |         | 0<br>0<br>92<br>8<br>0.27         |
| Mass of moist soil + pan (<br>Mass of dry soil + pan (g)<br>Mass of pan (g)<br>Mass of dry soil (g)<br>Mass of washed soil (g)<br>Mass loss in wash (g)<br>Summary Parameter<br>Coarser than Gravel%<br>Gravel%<br>Sand%<br>Fines%<br>D60, mm:<br>D30, mm: |         | 0<br>0<br>92<br>8<br>0.27<br>0.18 |

| Laboratory Informa | ation                           |
|--------------------|---------------------------------|
| Lab Name:          | Traceable Measurement Pvt. Ltd. |
| Tested By:         |                                 |
| Reviewed By:       |                                 |
| Test Date:         | 07/10/2079                      |
| Report Date:       |                                 |


# Preparation Method: Oven Dry Air Dry



| S.N      | (mm)  | Wt Ret | % Ret | Cum %<br>Ret | % Pass |
|----------|-------|--------|-------|--------------|--------|
| 1        | 80    | 0.0    | 0.00  | 0.00         | 100.00 |
| 2        | 38.1  | 0.0    | 0.00  | 0.00         | 100.00 |
| 3        | 25.4  | 0.0    | 0.00  | 0.00         | 100.00 |
| 4        | 19.1  | 0.0    | 0.00  | 0.00         | 100.00 |
| 5        | 9.5   | 0.0    | 0.00  | 0.00         | 100.00 |
| 6        | 4.75  | 0.0    | 0.00  | 0.00         | 100.00 |
| 7        | 2.36  | 0.400  | 0.25  | 0.25         | 99.75  |
| 8        | 1.70  | 0.100  | 0.06  | 0.31         | 99.69  |
| 9        | 0.8   | 0.900  | 0.56  | 0.86         | 99.14  |
| 10       | 0.425 | 7.800  | 4.82  | 5.68         | 94.32  |
| 11       | 0.20  | 94.700 | 58.49 | 64.18        | 35.82  |
| 12       | 0.15  | 25.000 | 15.44 | 79.62        | 20.38  |
| 13       | 0.075 | 20.400 | 12.60 | 92.22        | 7.78   |
| Pan      |       | 12.600 |       |              |        |
| Tot Pan  |       | 12.60  | 7.78  | 100.00       | 0.00   |
| Fineness | Mod.  |        |       | 1.51         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

Poorly Graded Sand with Clay (SP-SC)





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | MOLAN               | Di                   | ect Shear    | Test                       |                  |                                |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|----------------------|--------------|----------------------------|------------------|--------------------------------|-------------------|
| Project Name<br>Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :            | MCA-Nepal<br>T17/1N |                      |              |                            |                  |                                |                   |
| Sore Hole No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :            | 1 // IN             |                      |              |                            | PRG factor:      | 0.002312                       |                   |
| Sore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :            | 0-1.5m              |                      |              |                            | Area:            | 0.002312                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | -                   |                      |              |                            |                  |                                |                   |
| Hz Dial Gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Normal Stress (     |                      | Normal Stres | s (100 kN/m <sup>2</sup> ) | Normal Stress (  |                                |                   |
| reading (x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Normal       |                     | Shear                | Load Ring    | Shear                      |                  | Shear                          | Remarks           |
| 0.01mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strain (%)   | Load Ring Dial      | Stress               | Dial         | Stress(KN/m <sup>2</sup>   | Load Ring Dial   | Stress                         |                   |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                     | (KN/m <sup>2</sup> ) |              | )                          |                  | $(KN/m^2)$                     |                   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0%           | 0                   | 0.00                 | 0            | 0.00                       | 0                | 0.00                           |                   |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4%         | 14                  | 8.99                 | 21           | 13.49                      | 28               | 17.98                          |                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8%         | 16                  | 10.28                | 23           | 14.77                      | 33               | 21.19                          |                   |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1%           | 19                  | 12.20                | 24           | 15.41                      | 36               | 23.12                          |                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7%         | 20                  | 12.84                | 25           | 16.06                      | 39               | 25.05                          |                   |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1%         | 21                  | 13.49                | 26           | 16.70                      | 41               | 26.33                          |                   |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3%           | 22                  | 14.13                | 27           | 17.34                      | 43               | 27.62                          |                   |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9%         | 23                  | 14.77                | 28           | 17.98                      | 45               | 28.90                          |                   |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3%         | 24                  | 15.41                | 29           | 18.62                      | 46               | 29.54                          |                   |
| 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4%           | 25                  | 16.06                | 31           | 19.91                      | 49               | 31.47                          |                   |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0%         | 26                  | 16.70                | 32           | 20.55                      | 52               | 33.40                          |                   |
| 350<br>400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8%<br>7%   | 27 28               | 17.34<br>17.98       | 33<br>34     | 21.19<br>21.84             | 54<br>56         | 34.68<br>35.96                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                     | 17.98                |              |                            |                  | ++                             |                   |
| 450<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5%<br>8.3% | 28 30               | 17.98                | 35<br>37     | 22.48<br>23.76             | 58<br>60         | 37.25<br>38.53                 |                   |
| 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.2%         | 30                  | 19.27                | 37           | 23.76                      | 60               | 38.53                          |                   |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.2%         | 30                  | 19.27                | 38           | 24.40                      | 64               | 41.10                          |                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.7%        | 30                  | 19.27                | 40           | 25.69                      | 66               | 41.10                          |                   |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.3%        | 31                  | 19.91                | 40           | 26.33                      | 68               | 43.67                          |                   |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.5%        | 31                  | 19.91                | 42           | 26.97                      | 70               | 44.96                          |                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7%        | 51                  |                      | 43           | 27.62                      | 70               | 45.60                          |                   |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.3%        |                     |                      | 43           | 27.62                      | 73               | 46.88                          |                   |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20%          |                     |                      | 44           | 28.26                      | 74               | 47.52                          |                   |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.7%        |                     |                      | 45           | 28.90                      | 75               | 48.17                          |                   |
| 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.3%        |                     |                      | 45           | 28.90                      | 76               | 48.81                          |                   |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25%          |                     |                      | 46           | 29.54                      | 77               | 49.45                          |                   |
| 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.7%        |                     |                      |              |                            |                  |                                |                   |
| 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                     |                      |              | 60                         |                  |                                |                   |
| 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                     |                      |              | <b>e</b> 50                |                  |                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                     |                      |              | CDa<br>Da                  |                  |                                |                   |
| 60.0 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                     |                      |              | ₩ 40<br>S                  | —200 kPa         | -                              |                   |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     | -0                   |              | 05 stress (kPa)<br>06 oct  |                  |                                |                   |
| tre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | -0                  |                      |              | 20 ar                      |                  |                                |                   |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0            |                     |                      |              | je                         |                  |                                |                   |
| 0.0 hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     |                      |              | 5 IO                       |                  |                                |                   |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.0         | 100.0 150.0         | 200.0 25             | 0.0 300.0    | 0                          |                  |                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Normal stress (kl   |                      |              |                            | 0.0 2.0 4.0 6.0. | 8.0 10.0 12.0<br>splacement (r | 14.0 16.0 18.     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | 54 605 (11          | 9                    |              |                            | Shear di         | splacement (r                  | nm)               |
| 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2013         |                     |                      |              |                            |                  |                                |                   |
| <b>a</b> 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                     |                      |              |                            |                  |                                |                   |
| KP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |                     |                      |              |                            |                  |                                |                   |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 200 Ki       |                     |                      |              |                            | φ'               | 14                             | Degree            |
| 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                     |                      |              |                            |                  | 10.28                          | kN/m <sup>2</sup> |
| JE 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                     |                      |              |                            | · ·              |                                |                   |
| Q 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                     |                      |              |                            |                  |                                |                   |
| pe pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r            |                     |                      |              |                            |                  |                                |                   |
| Subscription         Subscription< | - F          |                     |                      |              |                            |                  |                                |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                     |                      | 21% 24% 27   | 7% 30%                     |                  |                                |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 3% 6      |                     |                      | 21/0 24/0 2  |                            |                  |                                |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 3% 6      |                     | 5% 18%<br>in (%)     | 21/0 24/0 2  |                            |                  |                                |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 3% 6      |                     |                      | 2170 2470 2  |                            |                  |                                |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 3% 6      |                     |                      | 1            |                            | •                |                                |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 3% 6      |                     |                      |              |                            |                  | 1 4                            |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0% 3% 6      |                     |                      |              | luitu                      |                  | í                              |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tuulu        | Stra                |                      |              |                            | TORY             | linini                         |                   |



| Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                          | MCA-Nepal          |                   | ect Shear    | - 051                                                       |                       |                          |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-------------------|--------------|-------------------------------------------------------------|-----------------------|--------------------------|-------------------|
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | T17/1N             |                   |              |                                                             |                       |                          |                   |
| Bore Hole No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :                          | 1                  |                   |              |                                                             | PRG factor:           | 0.002312                 |                   |
| Bore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :                          | 1.5m - 4.5m        |                   |              |                                                             | Area:                 | 0.0036                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [                          |                    | <b>501 N</b> ( 2) | N IG         | (100 101/ 2)                                                |                       | 200 1 2                  |                   |
| Hz Dial Gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Normal                     | Normal Stress (    | SUKN/m )<br>Shear | Normal Stres | s (100 kN/m )<br>Shear                                      | Normal Stress (       | Shear                    |                   |
| reading (x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Strain (%)                 | Load Ring Dial     | Stress            | Load Ring    | Stress(KN/m <sup>2</sup>                                    | Load Ring Dial        | Stress                   | Remarks           |
| 0.01mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 2.000 rung 2.00    | $(KN/m^2)$        | Dial         | )                                                           | Loud Hing Dim         | $(KN/m^2)$               |                   |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0%                         | 0                  | 0.00              | 0            | 0.00                                                        | 0                     | 0.00                     |                   |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4%                       | 26                 | 16.70             | 40           | 25.69                                                       | 52                    | 33.40                    |                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8%                       | 34                 | 21.84             | 52           | 33.40                                                       | 65                    | 41.74                    |                   |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1%                         | 40                 | 25.69             | 58           | 37.25                                                       | 76                    | 48.81                    |                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7%                       | 45                 | 28.90             | 63           | 40.46                                                       | 86                    | 55.23                    |                   |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1%                       | 50                 | 32.11             | 66           | 42.39                                                       | 93                    | 59.73                    |                   |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3%                         | 54                 | 34.68             | 70           | 44.96                                                       | 99                    | 63.58                    |                   |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.9%                       | 56                 | 35.96             | 73           | 46.88                                                       | 104                   | 66.79                    |                   |
| 200 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3%                       | 59<br>64           | 37.89<br>41.10    | 76           | 48.81<br>52.02                                              | 110                   | 70.64                    |                   |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0%                       | 67                 | 41.10             | 81           | 52.02                                                       | 118                   | 80.92                    |                   |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8%                       | 70                 | 43.03             | 88           | 56.52                                                       | 133                   | 80.92                    |                   |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7%                         | 70                 | 46.24             | 91           | 58.44                                                       | 140                   | 89.91                    |                   |
| 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5%                       | 74                 | 47.52             | 93           | 59.73                                                       | 145                   | 93.12                    |                   |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.3%                       | 75                 | 48.17             | 96           | 61.65                                                       | 149                   | 95.69                    |                   |
| 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.2%                       | 75                 | 48.17             | 98           | 62.94                                                       | 151                   | 96.98                    |                   |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10%                        | 74                 | 47.52             | 99           | 63.58                                                       | 153                   | 98.26                    |                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.7%                      | 74                 | 47.52             | 102          | 65.51                                                       | 153                   | 98.26                    |                   |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.3%                      | 71                 | 45.60             | 105          | 67.43                                                       | 153                   | 98.26                    |                   |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15%                        |                    |                   | 107          | 68.72                                                       |                       |                          |                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.7%                      |                    |                   | 109          | 70.00                                                       |                       |                          |                   |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.3%<br>20%               |                    |                   | 108          | 69.36<br>64.86                                              |                       |                          |                   |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20%                        |                    |                   | 101          | 04.80                                                       |                       |                          |                   |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.3%                      |                    |                   |              |                                                             |                       |                          |                   |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25%                        |                    |                   |              |                                                             |                       |                          |                   |
| 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.7%                      |                    |                   |              |                                                             |                       |                          |                   |
| 140.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                    |                   |              | 120                                                         | —50 kPa               |                          |                   |
| 120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                    |                   |              | ि <b>ह</b> 100                                              |                       |                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |                    | -0                |              | kP.                                                         | 200 kPa               |                          |                   |
| (X) 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | -0                 |                   |              | Shear stress (kPa)<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 200 M u               |                          |                   |
| S 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                    |                   |              | 60 tř                                                       |                       |                          |                   |
| 40.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G                          |                    |                   |              | s 40                                                        |                       |                          |                   |
| 10 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                    |                   |              | Shee 50                                                     |                       |                          |                   |
| 0.00         0.00           0.00         0.08           0.00         0.0           0.00         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0                       | 100.0 150.0        | 200.0             |              |                                                             |                       |                          |                   |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.0                       |                    |                   | 50.0 300.0   | 0                                                           | 0.0.20                | 10 60                    | 8.0 10.0          |
| 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | Normal stress (k   | (Pa)              |              |                                                             | 0.0 2.0 2<br>Shear di | 4.0 6.0<br>splacement (n | 8.0 10.0<br>nm)   |
| 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 kPa                     | a                  |                   |              |                                                             |                       |                          |                   |
| (R) 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50 kPa<br>100 kl<br>200 kl | Pa                 |                   |              |                                                             |                       |                          |                   |
| 00.001 00.001 00.000 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 000 00.00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0000 |                            | <u></u>            |                   |              |                                                             |                       |                          |                   |
| ess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                    |                   |              |                                                             | φ'                    | 19                       | Degree            |
| 113 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                    |                   |              |                                                             | ¢<br>c'               | 31.14                    | kN/m <sup>2</sup> |
| 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                    |                   |              |                                                             | L L                   | 51.14                    | 111 0 111         |
| 5 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                    |                   |              |                                                             |                       |                          |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /                          |                    |                   |              |                                                             |                       |                          |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0% 3%                      | 6% 9% 12<br>Strain |                   | 18% 21%      | 24%                                                         |                       |                          |                   |
| $\frown$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                    |                   |              |                                                             |                       |                          | 1                 |
| Qi for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | մահ                        |                    |                   |              |                                                             |                       | hunhu                    |                   |
| O C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                    | ERING MA          | ATERIAL TEST |                                                             |                       | hudui                    |                   |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                          | Dir                          | ect Shear         | Test                                        |                 |                              |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|------------------------------|-------------------|---------------------------------------------|-----------------|------------------------------|-------------------|
| Project Name<br>Location<br>Bore Hole No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :<br>:                  | MCA-Nepal<br>T17/1N<br>1 |                              |                   |                                             | PRG factor:     | 0.002312                     |                   |
| Bore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                       | 4.5m - 6m                |                              |                   |                                             | Area:           | 0.0036                       |                   |
| Ha Dial Canaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | Normal Stress (          | 50kN/m <sup>2</sup> )        | Normal Stres      | s (100 kN/m <sup>2</sup> )                  | Normal Stress ( | 200 kN/m <sup>2</sup> )      |                   |
| Hz Dial Gauge<br>reading (x<br>0.01mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Normal<br>Strain (%)    | Load Ring Dial           | Shear<br>Stress              | Load Ring<br>Dial | Shear<br>Stress(KN/m <sup>2</sup>           | Load Ring Dial  | Shear<br>Stress              | Remarks           |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                      | 0                        | (KN/m <sup>2</sup> )<br>0.00 | 0                 | ) 0.00                                      | 0               | (KN/m <sup>2</sup> )<br>0.00 |                   |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0%                      | 25                       | 16.06                        | 32                | 20.55                                       | 60              | 38.53                        |                   |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8%                    | 35                       | 22.48                        | 41                | 26.33                                       | 75              | 48.17                        |                   |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1%                      | 44                       | 28.26                        | 46                | 29.54                                       | 84              | 53.95                        |                   |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.7%                    | 51                       | 32.75                        | 51                | 32.75                                       | 92              | 59.08                        |                   |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.1%                    | 56                       | 35.96                        | 56                | 35.96                                       | 98              | 62.94                        |                   |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3%                      | 60                       | 38.53                        | 59                | 37.89                                       | 104             | 66.79                        |                   |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.9%                    | 63                       | 40.46                        | 64                | 41.10                                       | 110             | 70.64                        |                   |
| 200<br>250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3%                    | 68<br>70                 | 43.67<br>44.96               | 69<br>77          | 44.31<br>49.45                              | 116<br>126      | 74.50<br>80.92               |                   |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.0%                    | 70                       | 44.96                        | 86                | 49.45<br>55.23                              | 126             | 80.92                        |                   |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.8%                    | 80                       | 51.38                        | 92                | 59.08                                       | 134             | 91.20                        |                   |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7%                      | 82                       | 52.66                        | 92                | 62.30                                       | 142             | 95.69                        |                   |
| 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.5%                    | 82                       | 52.66                        | 101               | 64.86                                       | 154             | 98.90                        |                   |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.3%                    | 80                       | 51.38                        | 105               | 67.43                                       | 159             | 102.11                       |                   |
| 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.2%                    | 79                       | 50.74                        | 108               | 69.36                                       | 162             | 104.04                       |                   |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10%                     |                          |                              | 110               | 70.64                                       | 167             | 107.25                       |                   |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.7%                   |                          |                              | 115               | 73.86                                       | 173             | 111.10                       |                   |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.3%                   |                          |                              | 119               | 76.42                                       | 178             | 114.32                       |                   |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15%                     |                          |                              | 119               | 76.42                                       | 178             | 114.32                       |                   |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16.7%<br>18.3%          |                          |                              | 115               | 73.86                                       | 175<br>170      | 112.39<br>109.18             |                   |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20%                     |                          |                              | 109               | /0.00                                       | 1/0             | 107.18                       |                   |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20%                     |                          |                              |                   |                                             |                 |                              |                   |
| 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.3%                   |                          |                              |                   |                                             |                 |                              |                   |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25%                     |                          |                              |                   |                                             |                 |                              |                   |
| 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.7%                   |                          |                              |                   |                                             |                 |                              |                   |
| (F) 140.0<br>120.0<br>120.0<br>100.0<br>80.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.0                    | Normal stress (k         | 200.0 25                     | 0.0 300.0         | 140<br>(e 120<br>100<br>80<br>40<br>20<br>0 |                 | 6.0 8.0<br>splacement (n     | 10.0 12.0         |
| 00.001 (KPa)<br>00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 000 00.00 000 00.00 000 00.00 000 000 00.00 000 00.00 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 0000 | 200 kI                  | Pa                       |                              |                   |                                             | φ'              | 19                           | Degree            |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                          |                              |                   |                                             |                 | 33.31                        | kN/m <sup>2</sup> |
| 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                          |                              |                   |                                             | T               |                              |                   |
| 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                          |                              |                   |                                             |                 |                              |                   |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                          |                              |                   |                                             |                 |                              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0% 3%                   | 6% 9% 12<br>Strair       |                              | 18% 21%           | 24%                                         |                 |                              |                   |
| oi for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ılınlı                  |                          | ERING MA                     | ATERIAL TES       | TING LABORA                                 |                 |                              |                   |
| otechnical Enginee<br>c. Virginia Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er, T <b>raceable N</b> | leasurements             |                              |                   |                                             | TR              |                              | -                 |



| Location<br>Bore Hole No<br>Bore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :                    | T17/1N<br>1<br>6m - 7.5m          |                      |                                   |                                                                  | PRG factor:<br>Area:              | 0.002312<br>0.0036        |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|----------------------|-----------------------------------|------------------------------------------------------------------|-----------------------------------|---------------------------|------------------------|
| Hz Dial Gauge<br>reading (x<br>0.01mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Normal<br>Strain (%) | Normal Stress (<br>Load Ring Dial | Shear<br>Stress      | Normal Stres<br>Load Ring<br>Dial | ss (100 kN/m <sup>2</sup> )<br>Shear<br>Stress(KN/m <sup>2</sup> | Normal Stress (<br>Load Ring Dial | Shear<br>Stress           | Remark                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                   | (KN/m <sup>2</sup> ) |                                   | )                                                                |                                   | (KN/m <sup>2</sup> )      |                        |
| 0 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0%                   | 0 21                              | 0.00                 | 0 35                              | 0.00 22.48                                                       | 0 40                              | 0.00 25.69                |                        |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4%                 | 34                                | 21.84                | 58                                | 37.25                                                            | 90                                | 57.80                     |                        |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1%                   | 43                                | 27.62                | 70                                | 44.96                                                            | 110                               | 70.64                     |                        |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7%                 | 50                                | 32.11                | 78                                | 50.09                                                            | 128                               | 82.20                     |                        |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1%                 | 58                                | 37.25                | 85                                | 54.59                                                            | 145                               | 93.12                     |                        |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3%                   | 62                                | 39.82                | 88                                | 56.52                                                            | 159                               | 102.11                    |                        |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.9%                 | 64                                | 41.10                | 90                                | 57.80                                                            | 168                               | 107.89                    |                        |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3%                 | 65                                | 41.74                | 99                                | 63.58                                                            | 179                               | 114.96                    |                        |
| 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4%                   | 65                                | 41.74                | 105                               | 67.43                                                            | 195                               | 125.23                    |                        |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.0%                 | 63                                | 40.46                | 107                               | 68.72                                                            | 205                               | 131.66                    |                        |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.8%                 | 61                                | 39.18                | 109                               | 70.00                                                            | 211                               | 135.51                    |                        |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7%                   | 60                                | 38.53                | 106                               | 68.08                                                            | 213                               | 136.79                    |                        |
| 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.5%                 |                                   |                      | 105                               | 67.43                                                            | 210                               | 134.87                    |                        |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.3%                 |                                   |                      | 105                               | 67.43                                                            | 209                               | 134.22                    |                        |
| 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.2%                 |                                   |                      | 105                               | 67.43                                                            | 205                               | 131.66                    |                        |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                  |                                   |                      |                                   |                                                                  | 199                               | 127.80                    |                        |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7%                |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.3%                |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15%<br>16.7%         |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.3%                |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20%                  |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.7%                |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.3%                |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25%                  |                                   |                      |                                   |                                                                  |                                   |                           |                        |
| 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.7%                |                                   |                      |                                   |                                                                  |                                   |                           |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                   |                      |                                   | 160                                                              |                                   |                           |                        |
| 250.0<br>a 200.0<br>150.0<br>150.0<br>200.0<br>150.0<br>200.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                    | 0.0 150.0                         |                      | 0.0 300.0                         | (140<br>120<br>80<br>80<br>80<br>80<br>80<br>90<br>90<br>90      |                                   |                           | 50 kPa<br>             |
| 160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | Normal stress (kl                 |                      |                                   |                                                                  | 0.0 1.0 2.0 3.<br>Shear di        | 0 4.0 5.0<br>splacement ( | 6.0 7.0 8<br>mm) 7.0 8 |
| Image: Non-on-open state         Image: Non-open state | 200 kPa              |                                   |                      |                                   |                                                                  | φ'                                | 34                        | Degree                 |
| 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                    |                                   | _                    |                                   |                                                                  | с'                                | 0.00                      | kN/m <sup>2</sup>      |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %                    | 3% 6%<br>Strain                   |                      | 9%                                | 12%                                                              |                                   |                           |                        |
| Di foi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | մահ                  | մահա                              | նուհ                 | ATERIAL TES                       | վումո                                                            |                                   |                           |                        |



| Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :             | MCA-Nepal                        |                       |              |                            |                      |                                          |                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------|-----------------------|--------------|----------------------------|----------------------|------------------------------------------|---------------------------------------------------------------------------------------|
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | :             | T17/1N                           |                       |              |                            |                      | 0.002212                                 |                                                                                       |
| Bore Hole No<br>Bore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :             | 1<br>7.5m - 9m                   |                       |              |                            | PRG factor:<br>Area: | 0.002312<br>0.0036                       |                                                                                       |
| Bore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :             | /.5m - 9m                        |                       |              |                            | Area:                | 0.0030                                   |                                                                                       |
| Ha Dial Canaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Normal Stress (:                 | 50kN/m <sup>2</sup> ) | Normal Stres | s (100 kN/m <sup>2</sup> ) | Normal Stress (      | 200 kN/m <sup>2</sup> )                  |                                                                                       |
| Hz Dial Gauge<br>reading (x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Normal        |                                  | Shear                 | Load Ring    | Shear                      |                      | Shear                                    | Remarl                                                                                |
| 0.01mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strain (%)    | Load Ring Dial                   | Stress                | Dial         | Stress(KN/m <sup>2</sup>   | Load Ring Dial       | Stress                                   | Remain                                                                                |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                  | (KN/m <sup>2</sup> )  |              | )                          |                      | $(KN/m^2)$                               |                                                                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%            | 0                                | 0.00                  | 0            | 0.00                       | 0                    | 0.00                                     |                                                                                       |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4%          | 25                               | 16.06                 | 31           | 19.91                      | 60                   | 38.53                                    |                                                                                       |
| 50<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8%          | 34<br>42                         | 21.84<br>26.97        | 55<br>66     | 35.32<br>42.39             | 92<br>112            | 59.08<br>71.93                           |                                                                                       |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1%            | 42                               | 20.97                 | 75           | 42.39                      | 112                  | 80.92                                    |                                                                                       |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1%          | 50                               | 32.11                 | 83           | 53.30                      | 120                  | 89.91                                    |                                                                                       |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3%            | 54                               | 34.68                 | 87           | 55.87                      | 140                  | 96.33                                    |                                                                                       |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9%          | 56                               | 35.96                 | 97           | 62.30                      | 158                  | 101.47                                   |                                                                                       |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3%          | 58                               | 37.25                 | 102          | 65.51                      | 163                  | 101.47                                   |                                                                                       |
| 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4%            | 63                               | 40.46                 | 105          | 67.43                      | 168                  | 107.89                                   |                                                                                       |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0%          | 65                               | 41.74                 | 110          | 70.64                      | 171                  | 109.82                                   |                                                                                       |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8%          | 66                               | 42.39                 | 112          | 71.93                      | 172                  | 110.46                                   |                                                                                       |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7%            | 66                               | 42.39                 | 114          | 73.21                      | 173                  | 111.10                                   |                                                                                       |
| 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.5%          | 66                               | 42.39                 | 114          | 73.21                      | 174                  | 111.75                                   |                                                                                       |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.3%          |                                  |                       | 113          | 72.57                      | 175                  | 112.39                                   |                                                                                       |
| 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.2%          |                                  |                       | 111          | 71.29                      | 175                  | 112.39                                   |                                                                                       |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10%           |                                  |                       |              |                            | 175                  | 112.39                                   |                                                                                       |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.7%         |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.3%         |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15%           |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.3%         |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20%           |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.7%         |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.3%         |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25%           |                                  |                       |              |                            |                      |                                          |                                                                                       |
| 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.7%         |                                  |                       |              |                            |                      |                                          |                                                                                       |
| (e dy) (k | 50.0          | 100.0 150.0<br>Normal stress (kF | 200.0<br>Pa)          | 250.0 300    | ]                          |                      | 0 4.0 5.0<br>splacement (<br>24<br>23.00 | 50 kPa<br>100 kPa<br>200 kPa<br>6.0 7.0 8<br>mm) 7.0 8<br>Degree<br>kN/m <sup>2</sup> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 3% 6%<br>Strain                  |                       | 9%           | 12%                        | 1 .                  |                                          | 1                                                                                     |
| nical Engineer, Trace<br>ginia Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eable Measure | ments Engine                     | EERING MA             | ATERIAL TES  | TING LABORA                |                      |                                          |                                                                                       |



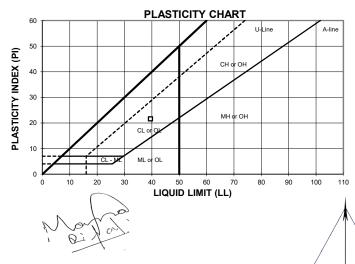
| Location<br>Bore Hole No<br>Bore Hole Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | :          | T17/1N<br>1<br>9m - 12m |                                |                   |                                                                           | PRG factor:<br>Area:  | 0.002312<br>0.0036               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------|--------------------------------|-------------------|---------------------------------------------------------------------------|-----------------------|----------------------------------|-------------|
| Hz Dial Gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Normal     | Normal Stress (         | 50kN/m <sup>2</sup> )<br>Shear |                   | s (100 kN/m <sup>2</sup> )<br>Shear                                       | Normal Stress (       | 200 kN/m <sup>2</sup> )<br>Shear | Rema        |
| reading (x<br>0.01mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Strain (%) | Load Ring Dial          | Stress<br>(KN/m <sup>2</sup> ) | Load Ring<br>Dial | Stress(KN/m <sup>2</sup> )                                                | Load Ring Dial        | Stress<br>(KN/m <sup>2</sup> )   | Keina       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0%         | 0                       | 0.00                           | 0                 | 0.00                                                                      | 0                     | 0.00                             |             |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4%       | 20                      | 12.84                          | 32                | 20.55                                                                     | 55                    | 35.32                            |             |
| 50<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8%       | 30<br>35                | 19.27<br>22.48                 | 50                | 32.11                                                                     | 85                    | 54.59                            |             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1%<br>1.7% | 35                      | 25.05                          | 65<br>75          | 41.74<br>48.17                                                            | 100<br>116            | 64.22<br>74.50                   |             |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1%       | 42                      | 26.97                          | 80                | 51.38                                                                     | 126                   | 80.92                            |             |
| 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3%         | 45                      | 28.90                          | 85                | 54.59                                                                     |                       | 88.63                            |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 43                      | 30.83                          | 85<br>91          |                                                                           | 138                   | 93.12                            |             |
| 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9%       | 50                      |                                | 91                | 58.44                                                                     | 145                   |                                  |             |
| 200 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3%       | 53                      | 32.11<br>34.04                 | 105               | 61.65<br>67.43                                                            | 156<br>166            | 100.19<br>106.61                 |             |
| 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.0%       | 56                      | 35.96                          | 103               | 69.36                                                                     | 177                   | 113.67                           |             |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8%       | 57                      | 36.61                          | 108               | 72.57                                                                     | 185                   | 113.67                           |             |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8%<br>7% | 58                      | 37.25                          | 113               | 72.57                                                                     | 185                   | 123.31                           |             |
| 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5%       | 59                      | 37.89                          | 113               | 71.93                                                                     | 192                   | 125.88                           |             |
| 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.3%       | 58                      | 37.25                          | 112               | 71.29                                                                     | 198                   | 125.88                           |             |
| 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.2%       | 58                      | 37.25                          | 112               | 71.93                                                                     | 200                   | 128.44                           |             |
| 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10%        | 58                      | 37.25                          |                   |                                                                           | 203                   | 130.37                           |             |
| 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.7%      |                         |                                |                   |                                                                           | 206                   | 132.30                           |             |
| 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.3%      |                         |                                |                   |                                                                           | 207                   | 132.94                           |             |
| 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15%        |                         |                                |                   |                                                                           | 208                   | 133.58                           |             |
| 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7%      |                         |                                |                   |                                                                           | 207                   | 132.94                           |             |
| 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.3%      |                         |                                |                   |                                                                           | 206                   | 132.30                           |             |
| 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20%        |                         |                                |                   |                                                                           | 206                   | 132.30                           |             |
| 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.7%      |                         |                                |                   |                                                                           | 206                   | 132.30                           |             |
| 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.3%      |                         |                                |                   |                                                                           |                       |                                  |             |
| 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25%        |                         |                                |                   |                                                                           |                       |                                  |             |
| 1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.7%      |                         |                                |                   | 160                                                                       |                       |                                  |             |
| 140.0<br>120.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                         | 0                              |                   | 140                                                                       |                       |                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                         |                                |                   | 120 L                                                                     |                       |                                  |             |
| - 0.08 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 9                       |                                |                   | <u>s</u> 100                                                              |                       |                                  |             |
| S 60.0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | , <b>(</b>              |                                |                   | stress (kPa)<br>100<br>80<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |                       |                                  | 50 kPa      |
| (Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai)<br>(Khai) | 0          |                         |                                |                   | S 60                                                                      |                       |                                  | 100 kPa     |
| Je 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                         |                                |                   | 00 Shear                                                                  |                       |                                  | •200 kPa    |
| 0.0 pp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                         |                                |                   | × 20                                                                      |                       |                                  |             |
| 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.0       | 100.0 150.0             | 200.0 25                       | 50.0 300.0        | 0                                                                         |                       |                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Normal stress (k        | Pa)                            |                   |                                                                           | 0.0 2.0 2<br>Shear di | 4.0 6.0<br>splacement (          | 8.0<br>(mm) |
| 160.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                         |                                |                   |                                                                           | Silver of             | .spineeniene (                   | ()          |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                         |                                |                   |                                                                           |                       |                                  |             |
| 120.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                         | -                              | 50 L D            |                                                                           |                       |                                  |             |
| <u>s</u> 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                         |                                | — 50 kPa          |                                                                           | P                     |                                  |             |
| 00.08 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                         |                                | — 100 kPa         |                                                                           | ф'                    | 31                               | Degi        |
| S 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                         | •                              | — 200 kPa         |                                                                           | c'                    | 9.00                             | kN/r        |
| (kpa)<br>140.00<br>120.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00  |            |                         |                                |                   |                                                                           |                       |                                  |             |
| 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                         |                                |                   |                                                                           |                       |                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                         |                                |                   |                                                                           |                       |                                  |             |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )% 3%      | 6% 9%                   | 6 12%                          | 6 15%             | 18%                                                                       |                       |                                  |             |
| Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,,, ,70    | Strain                  |                                | - 10/0            | 10/0                                                                      |                       | l                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Sudil                   | · ( ' '')                      |                   |                                                                           |                       |                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                         |                                |                   |                                                                           |                       |                                  |             |
| ant i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                         | . 1                            | 1                 |                                                                           |                       |                                  | 1           |
| K NON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1          | 1                       | r I                            | 1                 | 1                                                                         |                       | $\chi$                           |             |

MSc. Virginia Tech



### **Project Information**

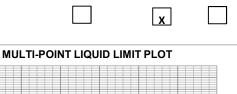
| Project Name:      | MCC    |
|--------------------|--------|
| Location:          | T17/1N |
| Client Name:       |        |
| Sample Information |        |
| Borehole/Test Pit: | 1      |
| Sample #:          |        |
| Depth:             | 1.5m   |
| Sample Type:       |        |
| Sampled By:        |        |

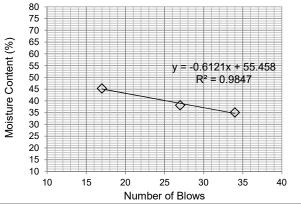

TRACEABLE MEASUREMENTS PVT. LTD.

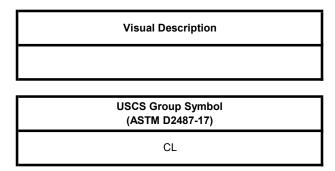
#### Liquid Limit

| Sample Number                     | 1     | 2     | 3     | 4 |
|-----------------------------------|-------|-------|-------|---|
| (I) No. of Blows                  | 34    | 27    | 17    |   |
| (II) Tin ID                       | 0     | 102   | 117   |   |
| (III) Mass of Tin + Moist Soil, g | 21.70 | 19.70 | 27.30 |   |
| (IV) Mass of Tin + Dry Soil, g    | 19.70 | 17.60 | 22.90 |   |
| (V) Mass of Water, g = (C-D)      | 2.00  | 2.10  | 4.40  |   |
| (VI) Mass of Tin, g               | 14.00 | 12.10 | 13.20 |   |
| (VII) Mass of Dry Soil, g = (D-F) | 5.70  | 5.50  | 9.70  |   |
| (VII) Moisture Content, % = (E/G) | 35.09 | 38.18 | 45.36 |   |

## Plastic Limit


| Sample Number                     | 1     | 2     | 3     | 4 |
|-----------------------------------|-------|-------|-------|---|
| (IX) Tin ID                       | 19    | 50    | 58    |   |
| (X) Mass of Tin + Moist Soil, g   | 16.60 | 17.40 | 17.90 |   |
| (XI) Mass of Tin + Dry Soil, g    | 16.00 | 17.00 | 17.20 |   |
| (XII) Mass of Water, g = (J-K)    | 0.60  | 0.40  | 0.70  |   |
| (XII) Mass of Tin, g              | 13.20 | 13.90 | 13.60 |   |
| (XIV) Mass of Dry Soil, g = (K-M) | 2.80  | 3.10  | 3.60  |   |
| (XV) Moisture Content, % = (L/N)  | 21.43 | 12.90 | 19.44 |   |
| (XVI) Average Moisture Content, % |       | 17    | .93   |   |



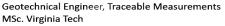


#### Laboratory Information

| Lab Name:    |  |
|--------------|--|
| Tested By:   |  |
| Checked By:  |  |
| Approved By: |  |
| Test Date:   |  |

### Preparation Method: Wet Preparation Oven Dry Air Dry








| Liquid Limit (%):    | 40 |
|----------------------|----|
| Plastic Limit (%):   | 18 |
| Plasticity Index (%) | 22 |

Report Date:

RACEABLE N

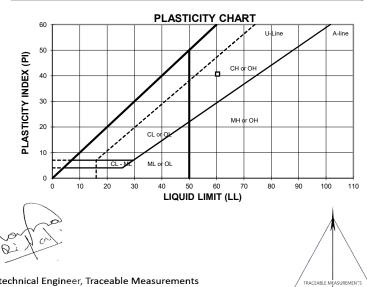
SUREMENT





### **Project Information**

| Project Name:      | MCC       |
|--------------------|-----------|
| Location:          | T17/1N    |
| Client Name:       |           |
| Sample Information |           |
| Borehole/Test Pit: | 1         |
| Sample #:          |           |
| Depth:             | 1.5m-4.5m |
| Sample Type:       |           |
| Sampled By:        |           |

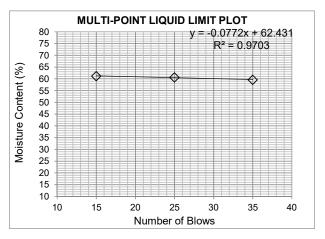

TRACEABLE MEASUREMENTS PVT. LTD.

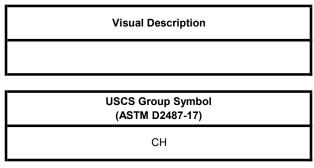
### Liquid Limit

| Sample Number                     | 1     | 2     | 3     | 4 |
|-----------------------------------|-------|-------|-------|---|
| (I) No. of Blows                  | 35    | 25    | 15    |   |
| (II) Tin ID                       | 76    | 26    | 73    |   |
| (III) Mass of Tin + Moist Soil, g | 22.20 | 22.20 | 33.00 |   |
| (IV) Mass of Tin + Dry Soil, g    | 18.80 | 18.50 | 24.80 |   |
| (V) Mass of Water, g = (C-D)      | 3.40  | 3.70  | 8.20  |   |
| (VI) Mass of Tin, g               | 13.10 | 12.40 | 11.40 |   |
| (VII) Mass of Dry Soil, g = (D-F) | 5.70  | 6.10  | 13.40 |   |
| (VII) Moisture Content, % = (E/G) | 59.65 | 60.66 | 61.19 |   |

## **Plastic Limit**

| Sample Number                     | 1     | 2     | 3     | 4 |
|-----------------------------------|-------|-------|-------|---|
| (IX) Tin ID                       | 17    | 34    | 75    |   |
| (X) Mass of Tin + Moist Soil, g   | 17.10 | 15.70 | 17.40 |   |
| (XI) Mass of Tin + Dry Soil, g    | 16.40 | 15.10 | 16.70 |   |
| (XII) Mass of Water, g = (J-K)    | 0.70  | 0.60  | 0.70  |   |
| (XII) Mass of Tin, g              | 12.10 | 12.70 | 12.80 |   |
| (XIV) Mass of Dry Soil, g = (K-M) | 4.30  | 2.40  | 3.90  |   |
| (XV) Moisture Content, % = (L/N)  | 16.28 | 25.00 | 17.95 |   |
| (XVI) Average Moisture Content, % |       | 19    | .74   |   |





#### Laboratory Information

| Lab Name:    |  |
|--------------|--|
| Tested By:   |  |
| Checked By:  |  |
| Approved By: |  |
| Test Date:   |  |

### Preparation Method: Wet Preparation Oven Dry Air Dry







| Liquid Limit (%):    | 60 |
|----------------------|----|
| Plastic Limit (%):   | 20 |
| Plasticity Index (%) | 41 |

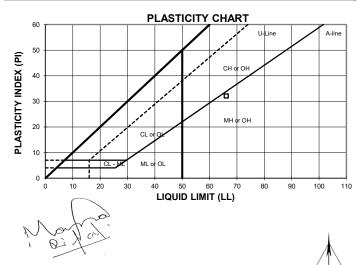
Report Date:

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech



### **Project Information**

| Project Name:      | MCC    |
|--------------------|--------|
| Location:          | T17/1N |
| Client Name:       |        |
| Sample Information |        |
| Borehole/Test Pit: | 1      |
| Sample #:          |        |
| Depth:             | 6m     |
| Sample Type:       |        |
| Sampled By:        |        |


TRACEABLE MEASUREMENTS PVT. LTD.

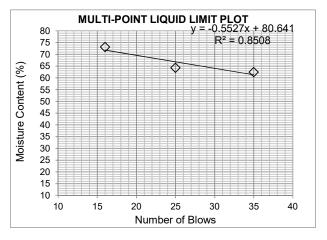
### Liquid Limit

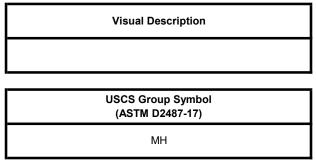
| Sample Number                     | 1     | 2     | 3     | 4 |
|-----------------------------------|-------|-------|-------|---|
| (I) No. of Blows                  | 25    | 35    | 16    |   |
| (II) Tin ID                       | 78    | 104   | 45    |   |
| (III) Mass of Tin + Moist Soil, g | 16.30 | 21.60 | 24.40 |   |
| (IV) Mass of Tin + Dry Soil, g    | 14.50 | 18.10 | 19.50 |   |
| (V) Mass of Water, g = (C-D)      | 1.80  | 3.50  | 4.90  |   |
| (VI) Mass of Tin, g               | 11.70 | 12.50 | 12.80 |   |
| (VII) Mass of Dry Soil, g = (D-F) | 2.80  | 5.60  | 6.70  |   |
| (VII) Moisture Content, % = (E/G) | 64.29 | 62.50 | 73.13 |   |

## **Plastic Limit**

| Sample Number                     | 1     | 2     | 3     | 4 |
|-----------------------------------|-------|-------|-------|---|
| (IX) Tin ID                       | 75    | 57    | 48    |   |
| (X) Mass of Tin + Moist Soil, g   | 16.40 | 18.70 | 14.70 |   |
| (XI) Mass of Tin + Dry Soil, g    | 15.40 | 17.80 | 13.90 |   |
| (XII) Mass of Water, g = (J-K)    | 1.00  | 0.90  | 0.80  |   |
| (XII) Mass of Tin, g              | 12.90 | 14.80 | 11.40 |   |
| (XIV) Mass of Dry Soil, g = (K-M) | 2.50  | 3.00  | 2.50  |   |
| (XV) Moisture Content, % = (L/N)  | 40.00 | 30.00 | 32.00 |   |
| (XVI) Average Moisture Content, % |       | 34    | .00   |   |




TRACEABLE


### Laboratory Information

| Lab Name:    |  |
|--------------|--|
| Tested By:   |  |
| Checked By:  |  |
| Approved By: |  |
| Test Date:   |  |

### Preparation Method: Wet Preparation Oven Dry Air Dry





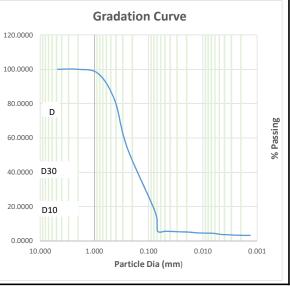


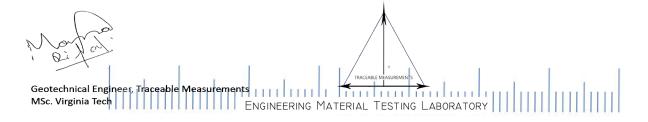
| Liquid Limit (%):    | 66 |
|----------------------|----|
| Plastic Limit (%):   | 34 |
| Plasticity Index (%) | 32 |

Report Date:

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech




#### **CIVIL ENGINEERING LAB REPORT** Project Name Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of : Client Name Date Sampled: 17/09/2079 MCA-N : Consultant Date Tested: 13/10/2079 Location T17/1N Borehole No. 1 Borehole Depth 1.5m


Hydrometer Test

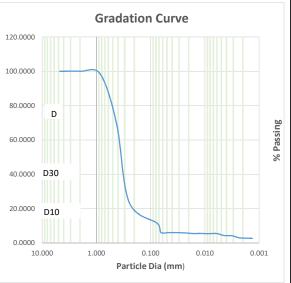
| Viscosity of water at 25<br>Specific gravity | 5 C tempe | ut Parame | ters               |             |                        | (IS:2720-4-1985)            |                    |         |        |                                                      |  |  |  |  |  |  |  |
|----------------------------------------------|-----------|-----------|--------------------|-------------|------------------------|-----------------------------|--------------------|---------|--------|------------------------------------------------------|--|--|--|--|--|--|--|
|                                              |           |           |                    |             |                        |                             |                    |         |        |                                                      |  |  |  |  |  |  |  |
| Specific gravity                             | e         | rature    | 9.220E-06          | g s/cm2     |                        |                             |                    |         |        |                                                      |  |  |  |  |  |  |  |
|                                              | y of soil |           | 2.516              |             |                        |                             |                    |         |        |                                                      |  |  |  |  |  |  |  |
| Weight of dr                                 | ry soil   |           | 50                 | g           |                        |                             |                    |         |        |                                                      |  |  |  |  |  |  |  |
| Zero Correc                                  | ction     |           | 2.5                |             |                        |                             |                    |         |        |                                                      |  |  |  |  |  |  |  |
| Miniscous Cor                                | rrection  |           | 0.5                |             |                        |                             |                    |         |        |                                                      |  |  |  |  |  |  |  |
| Time (MIN)                                   | Ra        | т         | Tc=-<br>4.85+0.25T | Rc=Ra-Zc+Tc | % finer =<br>(Rcxa)/Ws | Rcorrected for<br>miniscous | L=16.3-<br>0.164Ra | к       | D (mm) | Actual % finer wrt to<br>total fines in soil<br>mass |  |  |  |  |  |  |  |
| 0.5                                          | 19.5      | 24        | 1.15               | 18.15       | 36.3                   | 20                          | 13.102             | 0.01351 | 0.0691 | 5.977                                                |  |  |  |  |  |  |  |
| 1 '                                          | 18.5      | 24        | 1.15               | 17.15       | 34.3                   | 19                          | 13.266             | 0.01351 | 0.0492 | 5.647                                                |  |  |  |  |  |  |  |
| 2                                            | 18        | 24        | 1.15               | 16.65       | 33.3                   | 18.5                        | 13.348             | 0.01351 | 0.0349 | 5.483                                                |  |  |  |  |  |  |  |
| 4 '                                          | 17.5      | 24        | 1.15               | 16.15       | 32.3                   | 18                          | 13.43              | 0.01351 | 0.0248 | 5.318                                                |  |  |  |  |  |  |  |
| 8                                            | 17        | 24        | 1.15               | 15.65       | 31.3                   | 17.5                        | 13.512             | 0.01351 | 0.0176 | 5.153                                                |  |  |  |  |  |  |  |
| 15 <sup>-</sup>                              | 15.5      | 25        | 1.4                | 14.4        | 28.8                   | 16                          | 13.758             | 0.01351 | 0.0129 | 4.742                                                |  |  |  |  |  |  |  |
| 30                                           | 15        | 25        | 1.4                | 13.9        | 27.8                   | 15.5                        | 13.84              | 0.01351 | 0.0092 | 4.577                                                |  |  |  |  |  |  |  |
| 60                                           | 14.5      | 26        | 1.65               | 13.65       | 27.3                   | 15                          | 13.922             | 0.01351 | 0.0065 | 4.495                                                |  |  |  |  |  |  |  |
| 120                                          | 12.5      | 26        | 1.65               | 11.65       | 23.3                   | 13                          | 14.25              | 0.01351 | 0.0047 | 3.836                                                |  |  |  |  |  |  |  |
| 240                                          | 12.5      | 23        | 0.9                | 10.9        | 21.8                   | 13                          | 14.25              | 0.01351 | 0.0033 | 3.589                                                |  |  |  |  |  |  |  |
| 480                                          | 12        | 22        | 0.65               | 10.15       | 20.3                   | 12.5                        | 14.332             | 0.01351 | 0.0023 | 3.342                                                |  |  |  |  |  |  |  |
| 1440                                         | 11        | 25        | 1.4                | 9.9         | 19.8                   | 11.5                        | 14.496             | 0.01351 | 0.0014 | 3.260                                                |  |  |  |  |  |  |  |

# Sieve Analysis test calculations & Particle Size Distribution Curve

| Sieve Number | Diameter<br>(mm) | Soil<br>Retained<br>(g) | Accumulati<br>ve Retain<br>(gm) | % Mass Retain | % Passing |
|--------------|------------------|-------------------------|---------------------------------|---------------|-----------|
| #4           | 4.750            | 0                       | 0                               | 0.0000        | 100.0000  |
| #10          | 2.000            | 0                       | 0                               | 0.0000        | 100.0000  |
| #20          | 0.850            | 6.6                     | 6.6                             | 2.5038        | 97.4962   |
| #40          | 0.425            | 40.3                    | 46.9                            | 17.7921       | 82.2079   |
| #60          | 0.250            | 73.0                    | 119.9                           | 45.4856       | 54.5144   |
| #200         | 0.075            | 100.3                   | 220.2                           | 83.5357       | 16.4643   |
|              | 0.0691           | 43.4                    | 263.6                           |               | 5.977     |
|              | 0.0492           |                         |                                 |               | 5.647     |
|              | 0.0349           |                         |                                 |               | 5.483     |
|              | 0.0248           |                         |                                 |               | 5.318     |
|              | 0.0176           |                         |                                 |               | 5.153     |
| Hydrometer   | 0.0129           |                         |                                 |               | 4.742     |
| Analysis     | 0.0092           |                         |                                 |               | 4.577     |
|              | 0.0065           |                         |                                 |               | 4.495     |
|              | 0.0047           |                         |                                 |               | 3.836     |
|              | 0.0033           |                         |                                 |               | 3.589     |
|              | 0.0023           |                         |                                 |               | 3.342     |
|              | 0.0014           |                         |                                 |               | 3.260     |








|                | CIVIL ENGINEERING LAB REPORT |                                                                                                                              |  |  |  |  |  |  |  |  |  |
|----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Project Name   | :                            | Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of |  |  |  |  |  |  |  |  |  |
| Client Name    | :                            | MCA-N Date Sampled: 17/09/2079                                                                                               |  |  |  |  |  |  |  |  |  |
| Consultant     | :                            | Date Tested: 13/10/2079                                                                                                      |  |  |  |  |  |  |  |  |  |
| Location       | :                            | T17/1N                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Borehole No.   | :                            | 1                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Borehole Depth | :                            | 1.5m-4.5m                                                                                                                    |  |  |  |  |  |  |  |  |  |

|                   |                |            |                    | -           | rometer Te<br>2720-4-198 |                          |                    |         |        |                                                   |
|-------------------|----------------|------------|--------------------|-------------|--------------------------|--------------------------|--------------------|---------|--------|---------------------------------------------------|
|                   | Ing            | out Parame | eters              |             |                          | -                        |                    |         |        |                                                   |
| Viscosity of wate | r at 25 C temp | erature    | 9.220E-06          | g s/cm2     | 1                        |                          |                    |         |        |                                                   |
| Specific g        | ravity of soi  | I          | 2.516              |             | 1                        |                          |                    |         |        |                                                   |
| Weight            | t of dry soil  |            | 50                 | g           | 1                        |                          |                    |         |        |                                                   |
| Zero (            | Correction     |            | 2.5                |             | 1                        |                          |                    |         |        |                                                   |
| Miniscou          | s Correction   |            | 0.5                |             |                          |                          |                    |         |        |                                                   |
| Time (MIN)        | Ra             | т          | Tc=-<br>4.85+0.25T | Rc=Ra-Zc+Tc | % finer =<br>(Rcxa)/Ws   | Rcorrected for miniscous | L=16.3-<br>0.164Ra | к       | D (mm) | Actual % finer wrt<br>total fines in soil<br>mass |
| 0.5               | 28.5           | 24         | 1.15               | 27.15       | 54.3                     | 29                       | 11.626             | 0.01351 | 0.0651 | 6.1                                               |
| 1                 | 28             | 24         | 1.15               | 26.65       | 53.3                     | 28.5                     | 11.708             | 0.01351 | 0.0462 | 6.0                                               |
| 2                 | 28             | 24         | 1.15               | 26.65       | 53.3                     | 28.5                     | 11.708             | 0.01351 | 0.0327 | 6.0                                               |
| 4                 | 27             | 24         | 1.15               | 25.65       | 51.3                     | 27.5                     | 11.872             | 0.01351 | 0.0233 | 5.8                                               |
| 8                 | 25.5           | 24         | 1.15               | 24.15       | 48.3                     | 26                       | 12.118             | 0.01351 | 0.0166 | 5.4                                               |
| 15                | 25.5           | 25         | 1.4                | 24.4        | 48.8                     | 26                       | 12.118             | 0.01351 | 0.0121 | 5.                                                |
| 30                | 25             | 25         | 1.4                | 23.9        | 47.8                     | 25.5                     | 12.2               | 0.01351 | 0.0086 | 5.4                                               |
| 60                | 25             | 26         | 1.65               | 24.15       | 48.3                     | 25.5                     | 12.2               | 0.01351 | 0.0061 | 5.4                                               |
| 120               | 20             | 26         | 1.65               | 19.15       | 38.3                     | 20.5                     | 13.02              | 0.01351 | 0.0044 | 4.3                                               |
| 240               | 20             | 23         | 0.9                | 18.4        | 36.8                     | 20.5                     | 13.02              | 0.01351 | 0.0031 | 4.1                                               |
| 480               | 15             | 22         | 0.65               | 13.15       | 26.3                     | 15.5                     | 13.84              | 0.01351 | 0.0023 | 2.9                                               |
| 1440              | 13             | 25         | 1.4                | 11.9        | 23.8                     | 13.5                     | 14.168             | 0.01351 | 0.0013 | 2.7                                               |

## Sieve Analysis test calculations & Particle Size Distribution Curve

| Sieve Number | Diameter<br>(mm) | Soil<br>Retained<br>(g) | Accumulati<br>ve Retain<br>(gm) | % Mass Retain | % Passing |
|--------------|------------------|-------------------------|---------------------------------|---------------|-----------|
| #4           | 4.750            | 0                       | 0                               | 0.0000        | 100.0000  |
| #10          | 2.000            | 0                       | 0                               | 0.0000        | 100.0000  |
| #20          | 0.850            | 5.2                     | 5.2                             | 1.5791        | 98.4209   |
| #40          | 0.425            | 95.3                    | 100.5                           | 30.5193       | 69.4807   |
| #60          | 0.250            | 150.3                   | 250.8                           | 76.1616       | 23.8384   |
| #200         | 0.075            | 41.1                    | 291.9                           | 88.6426       | 11.3574   |
|              | 0.0651           | 37.4                    | 329.3                           |               | 6.167     |
|              | 0.0462           |                         |                                 |               | 6.054     |
|              | 0.0327           |                         |                                 |               | 6.054     |
|              | 0.0233           |                         |                                 |               | 5.826     |
|              | 0.0166           |                         |                                 |               | 5.486     |
| Hydrometer   | 0.0121           |                         |                                 |               | 5.542     |
| Analysis     | 0.0086           |                         |                                 |               | 5.429     |
|              | 0.0061           |                         |                                 |               | 5.486     |
|              | 0.0044           |                         |                                 |               | 4.350     |
|              | 0.0031           |                         |                                 |               | 4.180     |
|              | 0.0023           |                         |                                 |               | 2.987     |
|              | 0.0013           |                         |                                 |               | 2.703     |



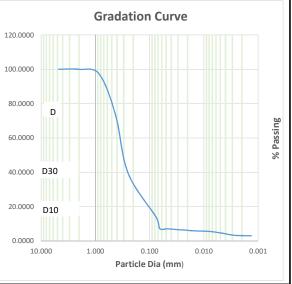
Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

R

Engineering Material Testing Laboratory

RACEABLE




#### **CIVIL ENGINEERING LAB REPORT** Project Name Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of : Client Name MCA-N Date Sampled: 17/09/2079 : Consultant Date Tested: 13/10/2079 Location T17/1N Borehole No. 1 Borehole Depth 6m

Hydrometer Test

|                    |                                                          |            |                    | (IS::       | 2720-4-198             | 5)                       |                    |         |        |                                                      |
|--------------------|----------------------------------------------------------|------------|--------------------|-------------|------------------------|--------------------------|--------------------|---------|--------|------------------------------------------------------|
|                    | Ing                                                      | out Parame | eters              | •           |                        | •                        |                    |         |        |                                                      |
| Viscosity of water | Viscosity of water at 25 C temperature 9.220E-06 g s/cm2 |            |                    | g s/cm2     | 1                      |                          |                    |         |        |                                                      |
| Specific g         | ravity of soi                                            | I          | 2.516              |             | ]                      |                          |                    |         |        |                                                      |
| Weight             | of dry soil                                              |            | 50                 | g           | ]                      |                          |                    |         |        |                                                      |
| Zero C             | orrection                                                |            | 2.5                |             | ]                      |                          |                    |         |        |                                                      |
| Miniscous          | s Correction                                             |            | 0.5                |             | ]                      |                          |                    |         |        |                                                      |
| Time (MIN)         | Ra                                                       | т          | Tc=-<br>4.85+0.25T | Rc=Ra-Zc+Tc | % finer =<br>(Rcxa)/Ws | Rcorrected for miniscous | L=16.3-<br>0.164Ra | к       | D (mm) | Actual % finer wrt to<br>total fines in soil<br>mass |
| 0.5                | 28                                                       | 24         | 1.15               | 26.65       | 53.3                   | 28.5                     | 11.708             | 0.01351 | 0.0654 | 7.215                                                |
| 1                  | 27.5                                                     | 24         | 1.15               | 26.15       | 52.3                   | 28                       | 11.79              | 0.01351 | 0.0464 | 7.080                                                |
| 2                  | 26                                                       | 24         | 1.15               | 24.65       | 49.3                   | 26.5                     | 12.036             | 0.01351 | 0.0331 | 6.674                                                |
| 4                  | 25                                                       | 24         | 1.15               | 23.65       | 47.3                   | 25.5                     | 12.2               | 0.01351 | 0.0236 | 6.403                                                |
| 8                  | 23.5                                                     | 24         | 1.15               | 22.15       | 44.3                   | 24                       | 12.446             | 0.01351 | 0.0168 | 5.997                                                |
| 15                 | 22.5                                                     | 25         | 1.4                | 21.4        | 42.8                   | 23                       | 12.61              | 0.01351 | 0.0124 | 5.794                                                |
| 30                 | 22                                                       | 25         | 1.4                | 20.9        | 41.8                   | 22.5                     | 12.692             | 0.01351 | 0.0088 | 5.658                                                |
| 60                 | 20                                                       | 26         | 1.65               | 19.15       | 38.3                   | 20.5                     | 13.02              | 0.01351 | 0.0063 | 5.185                                                |
| 120                | 17.5                                                     | 26         | 1.65               | 16.65       | 33.3                   | 18                       | 13.43              | 0.01351 | 0.0045 | 4.508                                                |
| 240                | 15                                                       | 23         | 0.9                | 13.4        | 26.8                   | 15.5                     | 13.84              | 0.01351 | 0.0032 | 3.628                                                |
| 480                | 13.5                                                     | 22         | 0.65               | 11.65       | 23.3                   | 14                       | 14.086             | 0.01351 | 0.0023 | 3.154                                                |
| 1440               | 12.5                                                     | 25         | 1.4                | 11.4        | 22.8                   | 13                       | 14.25              | 0.01351 | 0.0013 | 3.086                                                |

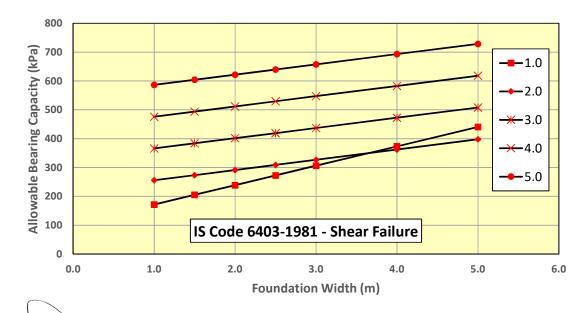
# Sieve Analysis test calculations & Particle Size Distribution Curve

| Sieve Number | Diameter<br>(mm) | Soil<br>Retained<br>(g) | Accumulati<br>ve Retain<br>(gm) | % Mass Retain | % Passing |
|--------------|------------------|-------------------------|---------------------------------|---------------|-----------|
| #4           | 4.750            | 0                       | 0                               | 0.0000        | 100.0000  |
| #10          | 2.000            | 0                       | 0                               | 0.0000        | 100.0000  |
| #20          | 0.850            | 8.7                     | 8.7                             | 2.7645        | 97.2355   |
| #40          | 0.425            | 75.1                    | 83.8                            | 26.6285       | 73.3715   |
| #60          | 0.250            | 106.6                   | 190.4                           | 60.5021       | 39.4979   |
| #200         | 0.075            | 81.7                    | 272.1                           | 86.4633       | 13.5367   |
|              | 0.0654           | 42.6                    | 314.7                           |               | 7.215     |
|              | 0.0464           |                         |                                 |               | 7.080     |
|              | 0.0331           |                         |                                 |               | 6.674     |
|              | 0.0236           |                         |                                 |               | 6.403     |
|              | 0.0168           |                         |                                 |               | 5.997     |
| Hydrometer   | 0.0124           |                         |                                 |               | 5.794     |
| Analysis     | 0.0088           |                         |                                 |               | 5.658     |
|              | 0.0063           |                         |                                 |               | 5.185     |
|              | 0.0045           |                         |                                 |               | 4.508     |
|              | 0.0032           |                         |                                 |               | 3.628     |
|              | 0.0023           |                         |                                 |               | 3.154     |
|              | 0.0013           |                         |                                 |               | 3.086     |





Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech


# Soil Investigation Works of Consulting Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal Bearing capacity analysis of the Shallow Foundation

This calculation based on the IS:6403-1981. The allowable bearing capacity is based on the shear failure of soil. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

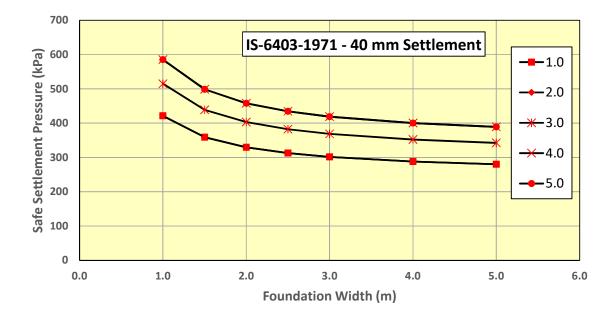
# Indo Nepal Border - New Butwal 400 kV D/C TL

| <u>Bore Hole No T17/1N</u>                       |       |       |       |       |       |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Depth of Foundation, D <sub>f</sub> (m)          | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |
| Friction angle                                   | 30    | 30    | 30    | 30    | 30    |
| SPT N Value                                      | 21    | 21    | 25    | 28    | 28    |
| Unit wt. of soil, kN/m <sup>3</sup>              | 18    | 19    | 19    | 19    | 19    |
| Buoyant Unit wt. of soil. kN/m <sup>3</sup>      | 8     | 9     | 9     | 9     | 9     |
| Cohesion. kN/m <sup>2</sup>                      | 0     | 0     | 0     | 0     | 0     |
| Water Reduction Factor $W_{\boldsymbol{\gamma}}$ | 1     | 0.5   | 0.5   | 0.5   | 0.5   |
| Nq                                               | 18.40 | 18.40 | 18.40 | 18.40 | 18.40 |
| N <sub>c</sub>                                   | 30.14 | 30.14 | 30.14 | 30.14 | 30.14 |
| Ν <sub>γ</sub>                                   | 22.40 | 22.40 | 22.40 | 22.40 | 22.40 |

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS: 6403-1981 Shear |     |           |     |     |  |  |  |  |
|-----------------------------------------|---------------------------------------------------------------|-----|-----------|-----|-----|--|--|--|--|
|                                         |                                                               |     | Failure ) |     |     |  |  |  |  |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                           | 2.0 | 3.0       | 4.0 | 5.0 |  |  |  |  |
| Width of foundation, B (m)              |                                                               |     |           |     |     |  |  |  |  |
| 1.0                                     | 172                                                           | 256 | 366       | 476 | 587 |  |  |  |  |
| 1.5                                     | 205                                                           | 274 | 384       | 494 | 604 |  |  |  |  |
| 2.0                                     | 239                                                           | 291 | 402       | 512 | 622 |  |  |  |  |
| 2.5                                     | 272                                                           | 309 | 419       | 530 | 640 |  |  |  |  |
| 3.0                                     | 306                                                           | 327 | 437       | 547 | 657 |  |  |  |  |
| 4.0                                     | 373                                                           | 362 | 473       | 583 | 693 |  |  |  |  |
| 5.0                                     | 440                                                           | 398 | 508       | 618 | 728 |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion. Please refer to bearing capacity evaluated based on settlement criterion.




# Soil Investigation Works of Consulting Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal *Bearing capacity analysis of the Shallow Foundation*

This calculation based on the IS:6403-1971. The allowable bearing capacity is based on the settlement of 40 mm. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

| Indo Nepal Border - New Butwal 400 kV D/C TL |     |     |     |     |     |  |
|----------------------------------------------|-----|-----|-----|-----|-----|--|
| <u>Bore Hole No T17/1N</u>                   |     |     |     |     |     |  |
| Depth of Foundation, D <sub>f</sub> (m)      | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 |  |
| Friction angle                               | 30  | 30  | 30  | 30  | 30  |  |
| SPT N Value                                  | 21  | 21  | 25  | 28  | 28  |  |
| Unit wt of soil kN/m3                        | 18  | 19  | 19  | 19  | 19  |  |
| Water Reduction Factor Wy                    | 1   | 0.5 | 0.5 | 0.5 | 0.5 |  |

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS:6403-1971-40 mm<br>Settlement) |     |     |     |     |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------|-----|-----|-----|-----|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                         | 2.0 | 3.0 | 4.0 | 5.0 |  |  |  |  |
| Width of foundation, B (m)              |                                                                             |     |     |     |     |  |  |  |  |
| 1.0                                     | 421                                                                         | 421 | 515 | 585 | 585 |  |  |  |  |
| 1.5                                     | 359                                                                         | 359 | 439 | 499 | 499 |  |  |  |  |
| 2.0                                     | 330                                                                         | 330 | 403 | 458 | 458 |  |  |  |  |
| 2.5                                     | 313                                                                         | 313 | 382 | 434 | 434 |  |  |  |  |
| 3.0                                     | 302                                                                         | 302 | 369 | 419 | 419 |  |  |  |  |
| 4.0                                     | 288                                                                         | 288 | 352 | 400 | 400 |  |  |  |  |
| 5.0                                     | 280                                                                         | 280 | 342 | 389 | 389 |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion.





Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

# Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal Bearing capacity analysis of the Mat foundation

This calculation is based on the SPT N-value.

## Bore Hole No. -T17/1N

# Safe Settlement Bearing Pressure kN/m<sup>2</sup> (IS:6403-50 mm Settlement)

| Depth of Foundation, D <sub>f</sub> (m) | 1     | 3     | 4     | 6     | 7     | 9     | 10    | 12    |
|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| SPT N Value                             | 21    | 25    | 28    | 23    | 63    | 58    | 73    | 50    |
| Unit wt of soil kN/m3                   | 18    | 18    | 18    | 18    | 19    | 19    | 19    | 19    |
| Water Reduction Factor Wy               | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   |
|                                         |       |       |       |       |       |       |       |       |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0   | 3.0   | 4.0   | 6.0   | 7.0   | 9.0   | 10.0  | 12.0  |
| Safe Settlement Bearing                 | 229   | 279   | 210   | 254   | 762   |       | 000   | F 0 7 |
| Pressure, (kN/m <sup>2</sup> )          | 229   | 279   | 318   | 254   | 702   | 699   | 889   | 597   |
| Modulus of Subgrade Reaction,           | 10200 | 22252 | 25400 | 20220 | c00c0 | FF000 | 71120 | 47750 |
| Ks (kN/m <sup>3</sup> )                 | 18288 | 22352 | 25400 | 20320 | 60960 | 55880 | 71120 | 47752 |

RACEABLEN SUREMEN

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

Prepared By: Manab Rijal

Traceable Measurement (P) Ltd.

# Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal

| Indo Ne | <u>pal Border</u>  | - New Butw           | <u>ai 400 kV</u> | D/C IL                            | Borehole - | T17/1N  |       |      |                |      |       |        |                     |                     |                     |       |      |     |
|---------|--------------------|----------------------|------------------|-----------------------------------|------------|---------|-------|------|----------------|------|-------|--------|---------------------|---------------------|---------------------|-------|------|-----|
| De      | pth to GW          | 6                    | m                |                                   |            |         | Input |      |                |      |       |        |                     |                     |                     |       |      |     |
|         | PGA                | 0.3                  | g                | g NE: Water Table not Encountered |            |         |       |      |                |      |       |        |                     |                     |                     |       |      |     |
|         | Mw                 | 7.8                  |                  |                                   |            |         |       |      |                |      |       |        |                     |                     |                     |       |      |     |
|         | Pa                 | 101.3                | kPA              | kPA                               |            |         |       |      |                |      |       |        |                     |                     |                     |       |      |     |
|         |                    |                      | 1                |                                   |            |         |       |      |                |      |       |        |                     |                     |                     |       |      |     |
|         |                    | Total unit           |                  | _                                 |            | _1      |       |      |                |      |       |        |                     |                     |                     |       |      |     |
| Depth   | N <sub>field</sub> | wt.γ <sub>t</sub>    | Fines            | σ                                 | u ,        | σ'      | α(z)  | β(z) | r <sub>d</sub> | MSF  | N1 60 | ΔN1,60 | N <sub>1,60cs</sub> | CSR <sub>M7.5</sub> | CRR <sub>M7.5</sub> | Cσ    | kσ   | FS  |
| (m)     |                    | (KN/m <sup>3</sup> ) | content          | (kN/m²)                           | (kN/m²)    | (kN/m²) |       | •••  | -              |      |       |        | 2,0000              |                     |                     | Ĵ     | Ŭ    |     |
| 1.0     | 21                 | 18.0                 | 16               | 18                                | 0          | 18      | -0.03 | 0.00 | 1.00           | 0.92 | 30    | 3.58   | 33                  | 0.21                | 0.60                | 0.24  | 1.10 | NL  |
| 3.0     | 25                 | 18.0                 | 11               | 54                                | 0          | 54      | -0.13 | 0.02 | 0.99           | 0.92 | 27    | 1.61   | 28                  | 0.21                | 0.40                | 0.19  | 1.10 | NL  |
| 4.0     | 28                 | 18.0                 | 11               | 72                                | 0          | 72      | -0.20 | 0.02 | 0.98           | 0.92 | 26    | 1.61   | 28                  | 0.21                | 0.39                | 0.19  | 1.06 | NL  |
| 6.0     | 23                 | 18.0                 | 14               | 108                               | 0          | 108     | -0.34 | 0.04 | 0.96           | 0.92 | 19    | 2.91   | 21                  | 0.20                | 0.23                | 0.14  | 0.99 | 1.1 |
| 7.0     | 63                 | 19.0                 | 0                | 127                               | 69         | 58      | -0.42 | 0.05 | 0.95           | 0.92 | 60    | 0.00   | 60                  | 0.44                | 0.60                | -1.08 | 0.41 | NL  |
| 9.0     | 58                 | 19.0                 | 24               | 165                               | 88         | 77      | -0.59 | 0.07 | 0.93           | 0.92 | 52    | 4.98   | 57                  | 0.42                | 0.60                | -3.18 | 0.12 | NL  |
| 10.0    | 73                 | 19.0                 | 24               | 184                               | 98         | 86      | -0.68 | 0.08 | 0.92           | 0.92 | 63    | 4.98   | 68                  | 0.41                | 0.60                | -0.46 | 0.92 | NL  |

# Indo Nepal Border - New Butwal 400 kV D/C TL Borehole -T17/1N

Notes: 1) If above the water table, not subject to liquefaction

2) Fines content > 35%; Liquid Limit (LL) > 35%; and natural moisture content within 90% of the LL (i.e., 'Chinese Criteria'), not subject to liquefaction

3) Cyclical Resistance Ratio (CRR) equal to or greater than 0.5, not subject to liquefaction.

4) Clean sand  $(N1)_{60}$  equivalent equal to or greater than 34, not subject to liquefaction.

5) Fines content 50% or greater, not subject to liquefaction.

6) NL = Non-Liquefiable.

7) FS<1 indicates liquifiable soils.

TRACEABLE MEASUREMENTS



Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

# APPENDIX-H Laboratory Data and Detail Analysis of New Butwal-New Damauli 400 kV D/C TL (TW198)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Traceable Measurement Pvt. Ltd.<br>Drilling Log                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |       |                     |              |               |               |                                                                                                                   |           |                         |                        |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|---------------------|--------------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|------------------------|---------------------|
| Project:<br>Location:<br>Client:<br>Borehole No:<br>Dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Changes in 400                                                            | kV T     | Vorks of Consulting Services for Detai<br>Transmission Line Route Alignment<br>Damauli 400 kV D/C TL<br>24/09/2079<br>27/09/2079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |       |                     |              |               |               | d Survey and Updated Line Design for 30 km of<br>Position Cordinate<br>Easting (m) Northing (m)<br>218356 3092898 |           |                         |                        |                     |
| Method:<br>Hammer Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Rotary Boring</b><br>Monkey Hamm                                       | ıer      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |       |                     |              |               |               |                                                                                                                   |           | Water Ta                | ıble :-                |                     |
| Material I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description                                                               | Sumbol   | io materiale de la compacte de la compa | Depth, m             |       | Sample No.<br>&Type | 5/10 cm      | 5/10 cm of Jo | 5/10 cm       | N-Value                                                                                                           | Ncr-Value | N-Value SPT<br>DCPT     |                        |                     |
| Well Graded Gravel with<br>Sand; moist, brown, fine to coarse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | GW       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1<br>- 2<br>- 3    |       |                     | 10           | 15            | -<br>18<br>25 | 33                                                                                                                |           |                         |                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d sand                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 3<br>- 4<br>- 5    |       | SPT                 | 12           | 15            | 35            | 50                                                                                                                |           |                         |                        |                     |
| and Sand; moi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ist, brown, fine to<br>ained sand                                         | GW<br>GM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 6                  |       | DCPT                | 50/10        |               |               | 50/10                                                                                                             |           |                         |                        |                     |
| Sand; moist, bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d Gravel with<br>own, fine to coarse<br>ed sand                           | GW       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 7<br>- 8           |       | DCPT                | 50/5         |               |               | 50/5                                                                                                              |           |                         |                        |                     |
| and Sand; moi<br>coarse gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gravel with Silt<br>ist, brown, fine to<br>ained sand<br>Gravel with Silt | GW<br>GM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 9<br>- 10<br>- 11  |       | DCPT<br>DCPT        | 50/8<br>50/9 |               |               | 50/8<br>50/9                                                                                                      |           |                         |                        |                     |
| and Sand; moi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ist, brown, fine to<br>ained sand                                         | GW       | 승                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 12                 |       | DCPT<br>at 12.001   | 50/7         |               |               | 50/7                                                                                                              | Grou      | Ind: Dry                |                        |                     |
| Types of Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |          | $\frac{\alpha}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mp                   | leteu | at 12.001           | 11           |               | N             | Value                                                                                                             | GIU       | iliu. Di y              |                        |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |          | 0 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | o 4                  |       | 4 to                | 10           |               |               | to 30                                                                                                             |           | 30 to 50                | > 50                   |                     |
| Granular Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compactness                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ry Lo                | oose  | Loo                 |              |               |               | Dense                                                                                                             |           | Dense                   | Very Dense             |                     |
| Cohesive Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Consistency                                                               |          | 0 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>:0 2</b><br>y Sof |       | 2 to<br>So:         | 4            |               | 4 t           | t <b>o 8</b><br>I. Soft                                                                                           |           | <b>8 to 16</b><br>Stiff | 16 to 32<br>Very Stiff | > <b>32</b><br>Hard |
| Notes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |          | [ very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y 301                | L     |                     | li –         |               | Wicu          | . 5011                                                                                                            |           | Sun                     | very Still             | Tialu               |
| <ul> <li>Notes:</li> <li>1. Bottom of Boring at 20.0 m. SPT was conducted upto depth of 4.5 m and DCPT was conducted from 3m to 12 m.</li> <li>2. Boring terminated at selected depth.</li> <li>3. Boring backfilled with auger cuttings upon completion.</li> <li>4. Emperical Relation Between DCPT (Ncr) and SPT (N) values:</li> <li>Ncr = 1.5 N for depths upto 3.00 m</li> <li>Ncr = 1.75 N for depths 3.00 m to 6.00 m</li> <li>Ncr = 2.00 N for depths greater than 6.00 m</li> <li>Where,</li> <li>Ncr = recorded DCPT values</li> <li>N = SPT values</li> </ul> |                                                                           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |       |                     |              |               |               |                                                                                                                   |           |                         |                        |                     |

Geotechnic MSc. Virgin

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

| Traceable                                       | e Measur      | ements                                                                                                                                    | Pvt. Lt                   | d                                      |               |             |  |
|-------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------|---------------|-------------|--|
|                                                 | litpur-2, San | • •                                                                                                                                       |                           |                                        |               |             |  |
| Determ                                          | ination of M  |                                                                                                                                           |                           |                                        |               |             |  |
| Project :                                       |               | Soil Investigation Works of Services & updated line Design for 30 km of<br>Changes in 400kv Transmission Line Route Aligment of MCA-Nepal |                           |                                        |               |             |  |
| Location :                                      | TW-198        |                                                                                                                                           |                           |                                        |               |             |  |
| Sample Description :                            | SPT Sampl     |                                                                                                                                           |                           |                                        |               |             |  |
| Bore Hole No :                                  | 1             | Date Of S                                                                                                                                 | ampling                   |                                        |               |             |  |
| Lab Ref No.                                     |               | Date Of T                                                                                                                                 |                           |                                        |               |             |  |
| NAT                                             | JRAL MOISTU   | JRE CONT                                                                                                                                  | ENI                       |                                        |               |             |  |
| Depth m.                                        |               | 0 - 1.5m                                                                                                                                  |                           |                                        | 1.5m - 4.5m   | -           |  |
| Container No.                                   | 15            | 20                                                                                                                                        | 46                        | 218                                    | 209           | 62          |  |
| Weight of Wet Soil + Container,g                | 56.0          | 59.6                                                                                                                                      | 63.4                      | 79.9                                   | 100.9         | 90.3        |  |
| Weight of Dry Soil + Container,g                | 50.0          | 54.2                                                                                                                                      | 54.9                      | 72.5                                   | 90.0          | 80.2        |  |
| Weight of Water, g                              | 6.0           | 5.4                                                                                                                                       | 8.5                       | 7.4                                    | 10.9          | 10.1        |  |
| Weight of container, g                          | 14.5          | 13.8                                                                                                                                      | 13.2                      | 12.6                                   | 12.6          | 11.4        |  |
| Weight of Dry Soil, g                           | 35.5          | 40.4                                                                                                                                      | 41.7                      | 59.9                                   | 77.4          | 68.8        |  |
| Water Content, W %                              | 16.9          | 13.4                                                                                                                                      | 20.4                      | 12.4                                   | 14.1          | 14.7        |  |
| Average Water Content, W %                      |               | 16.9                                                                                                                                      |                           |                                        | 13.7          |             |  |
|                                                 | Bore Hole     | e No :-01                                                                                                                                 |                           |                                        |               |             |  |
| Depth m.                                        |               | 4.5m - 6m                                                                                                                                 |                           |                                        | 7.5m - 9m     |             |  |
| Container No.                                   | 51            | 70                                                                                                                                        | 210                       | 217                                    | 10            | 38          |  |
| Weight of Wet Soil + Container,g                | 62.7          | 66.8                                                                                                                                      | 80.4                      | 87.2                                   | 91.3          | 97.0        |  |
| Weight of Dry Soil + Container,g                | 57.9          | 61.8                                                                                                                                      | 73.7                      | 79.0                                   | 83.9          | 88.5        |  |
| Weight of Water, g                              | 4.8           | 5.0                                                                                                                                       | 6.7                       | 8.2                                    | 7.4           | 8.5         |  |
| Weight of container, g                          | 13.0          | 12.5                                                                                                                                      | 13.6                      | 13.1                                   | 20.3          | 12.7        |  |
| Weight of Dry Soil, g                           | 44.9          | 49.3                                                                                                                                      | 60.1                      | 65.9                                   | 63.6          | 75.8        |  |
| Water Content, W %                              | 10.7          | 10.1                                                                                                                                      | 11.1                      | 12.4                                   | 11.6          | 11.2        |  |
| Average Water Content, W %                      |               | 10.7                                                                                                                                      |                           |                                        | 11.8          |             |  |
|                                                 | Bore Hole     | • No :-01                                                                                                                                 |                           |                                        |               |             |  |
| Depth m.                                        |               | 10m                                                                                                                                       |                           |                                        | 12m           |             |  |
| Container No.                                   | 0             | 6                                                                                                                                         | 114                       | 29                                     | 72            | 109         |  |
| Weight of Wet Soil + Container,g                | 98.0          | 93.2                                                                                                                                      | 95.3                      | 51.8                                   | 69.8          | 73.9        |  |
| Weight of Dry Soil + Container,g                | 87.4          | 84.1                                                                                                                                      | 84.5                      | 51.6                                   | 69.3          | 73.6        |  |
| Weight of Water, g<br>Weight of container, g    | <u> </u>      | 9.1<br>13.1                                                                                                                               | 10.8<br>12.2              | 0.2<br>12.6                            | 0.5           | 0.3<br>12.3 |  |
| Weight of container, g<br>Weight of Dry Soil, g | 75.6          | 71.0                                                                                                                                      | 72.3                      | 39.0                                   | 56.7          | 61.3        |  |
| Water Content, W %                              | 14.0          | 12.8                                                                                                                                      | 14.9                      | 0.5                                    | 0.9           | 0.5         |  |
| Average Water Content, W %                      |               | 13.9                                                                                                                                      |                           |                                        | 0.6           |             |  |
|                                                 |               |                                                                                                                                           |                           |                                        |               |             |  |
| Tested By:                                      |               |                                                                                                                                           |                           | Verifi                                 | ed By:        |             |  |
|                                                 | Mart          | and .                                                                                                                                     |                           |                                        |               |             |  |
| TRACEABLE MEASL                                 | IREMENTS      |                                                                                                                                           | Geotechnic<br>MSc. Virgin | al Engineer, Tra<br><del>ia Tech</del> | aceable Measu | rements     |  |

| Traceable Measurements Pvt. Ltd<br>Lalitpur-2, Sanepa, Nepal                                                                                      |                                       |                                     |                                 |        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------|--------|--|--|--|
| TEST FOR SPECIFIC GRAVITY OF SOIL                                                                                                                 |                                       |                                     |                                 |        |  |  |  |
| Project Soil Investigation Works of Services & updated line Design for 30 km of<br>Changes in 400kv Transmission Line Route Aligment of MCA-Nepal |                                       |                                     |                                 |        |  |  |  |
| Client Name :<br>Location :                                                                                                                       | MCA-Nepal<br>TW-198                   | SAMPLE LABEL                        | INFORMATION                     |        |  |  |  |
|                                                                                                                                                   |                                       | Date of Sampling                    | :                               |        |  |  |  |
| Description of Sample                                                                                                                             |                                       | Date of Testing :-                  |                                 |        |  |  |  |
| 100 % pass through 4.7                                                                                                                            | 5 mm                                  | DH#                                 | BH01                            |        |  |  |  |
|                                                                                                                                                   |                                       | Depth                               | 0-1.5m                          |        |  |  |  |
| Test No                                                                                                                                           |                                       | 1                                   | 2                               |        |  |  |  |
| Wt. of Pycnometer, gm                                                                                                                             | (A)                                   | 96.4                                | 100.8                           |        |  |  |  |
| Wt. of Pycnometer + Sa                                                                                                                            | ample, gm (B)                         | 116.3                               | 120.6                           |        |  |  |  |
| Wt. of Pycnometer + Sa                                                                                                                            |                                       | 220.4                               | 224.3                           |        |  |  |  |
| Wt. of Pycnometer + W                                                                                                                             |                                       | 208.1                               | 212.0                           |        |  |  |  |
| Specific Gravity = (B-A)                                                                                                                          | /((D-A)-(C-B))                        | 2.618                               | 2.640                           |        |  |  |  |
| Average Value                                                                                                                                     |                                       |                                     | 2.629                           |        |  |  |  |
|                                                                                                                                                   | Tested By :                           |                                     | Verified By:                    |        |  |  |  |
|                                                                                                                                                   |                                       |                                     |                                 |        |  |  |  |
|                                                                                                                                                   | Traceable Measure<br>Lalitpur-2, Sane |                                     | a                               |        |  |  |  |
|                                                                                                                                                   |                                       |                                     |                                 |        |  |  |  |
|                                                                                                                                                   | TEST FOR SPECIFIC G                   |                                     |                                 |        |  |  |  |
| Project                                                                                                                                           | Soil Investigation Works of Service   |                                     |                                 |        |  |  |  |
| Client Name                                                                                                                                       | Changes in 400kv Transmission         |                                     | INFORMATION                     |        |  |  |  |
| Angle Point :                                                                                                                                     | MCA-Nepal<br>TW-198                   | SAIVIFLE LADEL                      |                                 |        |  |  |  |
| Angle i onit                                                                                                                                      | 100-190                               | Date of Sampling                    |                                 |        |  |  |  |
| Description of Sample                                                                                                                             |                                       | Date of Camping                     |                                 |        |  |  |  |
| 100 % pass through 4.7                                                                                                                            | '5 mm                                 | DH#                                 | BH01                            |        |  |  |  |
| iee /e paee an eagin in                                                                                                                           |                                       | Depth                               | 1.5m - 4.5m                     |        |  |  |  |
| Test No                                                                                                                                           |                                       | 1                                   | 2                               |        |  |  |  |
| Wt. of Pycnometer, gm                                                                                                                             | (A)                                   | 96.4                                | 101.3                           |        |  |  |  |
| Wt. of Pycnometer + Sa                                                                                                                            |                                       | 116.4                               | 121.3                           |        |  |  |  |
| Wt. of Pycnometer + Sa<br>Wt. of Pycnometer + Sa                                                                                                  |                                       | 220.4                               | 225.0                           |        |  |  |  |
| Wt. of Pychometer + W                                                                                                                             |                                       | 220.4                               | 212.2                           |        |  |  |  |
| Specific Gravity = (B-A)                                                                                                                          |                                       | 2.532                               | 2.778                           |        |  |  |  |
| Average Value                                                                                                                                     |                                       | 2.002                               | 2.655                           |        |  |  |  |
|                                                                                                                                                   |                                       | II                                  | 2.000                           |        |  |  |  |
|                                                                                                                                                   | Tested By :                           |                                     | Verified By:                    |        |  |  |  |
|                                                                                                                                                   |                                       | Martin                              | Nota                            |        |  |  |  |
|                                                                                                                                                   | TRACEABLE MEASUREMEN'S                | Geotechnical En<br>MSc. Virginia Te | gineer, Traceable Measuro<br>ch | ements |  |  |  |

| Traceable Measurements Pvt. Ltd<br>Lalitpur-2, Sanepa, Nepal<br>TEST FOR SPECIFIC GRAVITY OF SOIL |                                         |                                                        |                     |  |  |  |  |                                     |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------|---------------------|--|--|--|--|-------------------------------------|--|
|                                                                                                   |                                         |                                                        |                     |  |  |  |  | Soil Investigation Works of Service |  |
| Project Changes in 400kv Transmission                                                             |                                         |                                                        |                     |  |  |  |  |                                     |  |
| Client Name : MCA-Nepal                                                                           | -                                       |                                                        |                     |  |  |  |  |                                     |  |
| Angle Point : TW-198                                                                              |                                         |                                                        |                     |  |  |  |  |                                     |  |
| Ŭ                                                                                                 | Date of Samplin                         | g:                                                     |                     |  |  |  |  |                                     |  |
| Description of Sample                                                                             | Date of Testing                         | :-                                                     |                     |  |  |  |  |                                     |  |
| 100 % pass through 4.75 mm                                                                        | D H #                                   | BH01                                                   |                     |  |  |  |  |                                     |  |
|                                                                                                   | Depth                                   | 4.5m-6m                                                |                     |  |  |  |  |                                     |  |
| Test No                                                                                           | 1                                       | 2                                                      |                     |  |  |  |  |                                     |  |
| Wt. of Pycnometer, gm (A)                                                                         | 96.9                                    | 100.3                                                  |                     |  |  |  |  |                                     |  |
| Wt. of Pycnometer + Sample, gm (B)                                                                | 116.9                                   | 120.3                                                  |                     |  |  |  |  |                                     |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                                                        | 220.6                                   | 224.1                                                  |                     |  |  |  |  |                                     |  |
| Wt. of Pycnometer + Water, gm (D)                                                                 | 208.5                                   | 211.5                                                  |                     |  |  |  |  |                                     |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                                                            | 2.532                                   | 2.703                                                  |                     |  |  |  |  |                                     |  |
| Average Value                                                                                     |                                         | 2.617                                                  |                     |  |  |  |  |                                     |  |
| Tested By :                                                                                       |                                         | Verified By:                                           |                     |  |  |  |  |                                     |  |
| TRACEABLE MEASUREMEN'S                                                                            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Norton                                                 |                     |  |  |  |  |                                     |  |
|                                                                                                   | Ge Ge MS                                | otechnical Engineer, <sup>-</sup><br>ic. Virginia Tech | Traceable Measureme |  |  |  |  |                                     |  |
|                                                                                                   | C GRAVITY OF SOIL                       |                                                        |                     |  |  |  |  |                                     |  |
| Project Soil Investigation Works of Servic<br>Changes in 400kv Transmission                       |                                         |                                                        |                     |  |  |  |  |                                     |  |
| Client Name : MCA-Nepal                                                                           | SAMPLE LABE                             | L INFORMATION                                          |                     |  |  |  |  |                                     |  |
| Angle Point : TW-198                                                                              |                                         |                                                        |                     |  |  |  |  |                                     |  |
|                                                                                                   | Date of Samplin                         | •                                                      |                     |  |  |  |  |                                     |  |
| Description of Sample                                                                             | Date of Testing                         |                                                        |                     |  |  |  |  |                                     |  |
| 100 % pass through 4.75 mm                                                                        | D H #                                   | BH01                                                   |                     |  |  |  |  |                                     |  |
|                                                                                                   | Depth                                   | 6m-9m                                                  |                     |  |  |  |  |                                     |  |
| Test No                                                                                           | 1                                       | 2                                                      | ļ <b>I</b>          |  |  |  |  |                                     |  |
| Wt. of Pycnometer, gm (A)                                                                         | 97                                      | 100.5                                                  |                     |  |  |  |  |                                     |  |
| Wt. of Pycnometer + Sample, gm (B)<br>Wt. of Pycnometer + Sample + Water, gm (C)                  | 117.0                                   | 120.4                                                  |                     |  |  |  |  |                                     |  |
| Wt. of Pychometer + Sample + Water, gm (C)<br>Wt. of Pychometer + Water, gm (D)                   | 208.2                                   | 211.5                                                  |                     |  |  |  |  |                                     |  |
| Specific Gravity = $(B-A)/((D-A)-(C-B))$                                                          | 208.5                                   | 211.5                                                  |                     |  |  |  |  |                                     |  |
| Average Value                                                                                     | 0.905                                   | 0.985 1.000 0.993                                      |                     |  |  |  |  |                                     |  |
|                                                                                                   | II                                      | 0.000                                                  |                     |  |  |  |  |                                     |  |
| Tested By :                                                                                       |                                         | Verified By:                                           |                     |  |  |  |  |                                     |  |
| TRACEABLE MEASUREMEN'S                                                                            | Morton<br>Difference                    |                                                        |                     |  |  |  |  |                                     |  |

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

| Traceable Measurements Pvt. Ltd<br>Lalitpur-2, Sanepa, Nepal |                                |                                                                 |  |  |  |  |  |  |
|--------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|--|--|--|--|--|--|
| TEST FOR SPECIFIC GRAVITY OF SOIL                            |                                |                                                                 |  |  |  |  |  |  |
| Project Soil Investigation Works of Servic                   |                                |                                                                 |  |  |  |  |  |  |
| Changes in 400kv Transmission                                | Line Route Aligment of MC      | A-Nepal                                                         |  |  |  |  |  |  |
| Client Name : MCA-Nepal                                      | SAMPLE LABE                    | L INFORMATION                                                   |  |  |  |  |  |  |
| Angle Point : TW-198                                         |                                |                                                                 |  |  |  |  |  |  |
|                                                              | Date of Samplin                | -                                                               |  |  |  |  |  |  |
| Description of Sample                                        | Date of Testing                | :-                                                              |  |  |  |  |  |  |
| 100 % pass through 4.75 mm                                   | D H #                          | BH01                                                            |  |  |  |  |  |  |
|                                                              | Depth                          | 9m-10m                                                          |  |  |  |  |  |  |
| Test No                                                      | 1                              | 2                                                               |  |  |  |  |  |  |
| Wt. of Pycnometer, gm (A)                                    | 96.7                           | 100.6                                                           |  |  |  |  |  |  |
| Wt. of Pycnometer + Sample, gm (B)                           | 116.7                          | 220.6                                                           |  |  |  |  |  |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                   | 220.5                          | 224.4                                                           |  |  |  |  |  |  |
| Wt. of Pycnometer + Water, gm (D)                            | 208.6                          | 211.5                                                           |  |  |  |  |  |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                       | 2.469                          | <u> </u>                                                        |  |  |  |  |  |  |
| Average Value                                                |                                |                                                                 |  |  |  |  |  |  |
| Tested By :                                                  |                                | Verified By:                                                    |  |  |  |  |  |  |
|                                                              | No                             | Norton                                                          |  |  |  |  |  |  |
|                                                              | anena Nenal <sup>Geotech</sup> | <b>LCI</b><br>nical Engineer, Traceable Measureme<br>ginia Tech |  |  |  |  |  |  |
| Soil Investigation Works of Servic                           |                                | for 30 km of                                                    |  |  |  |  |  |  |
| Project : Changes in 400kv Transmission                      |                                |                                                                 |  |  |  |  |  |  |
| Client Name : MCA-Nepal                                      | -                              |                                                                 |  |  |  |  |  |  |
| Angle Point : TW-198                                         |                                |                                                                 |  |  |  |  |  |  |
| 5                                                            | Date of Samplin                | a :                                                             |  |  |  |  |  |  |
| Description of Sample                                        | Date of Testing                |                                                                 |  |  |  |  |  |  |
| 100 % pass through 4.75 mm                                   | DH#                            | BH01                                                            |  |  |  |  |  |  |
|                                                              | Depth                          | 10m-12m                                                         |  |  |  |  |  |  |
| Test No                                                      | 1                              | 2                                                               |  |  |  |  |  |  |
| Wt. of Pycnometer, gm (A)                                    | 96.8                           | 100.2                                                           |  |  |  |  |  |  |
| Wt. of Pycnometer + Sample, gm (B)                           | 116.8                          | 120.2                                                           |  |  |  |  |  |  |
| Wt. of Pycnometer + Sample + Water, gm (C)                   | 220.6                          | 224.2                                                           |  |  |  |  |  |  |
| Wt. of Pycnometer + Water, gm (D)                            | 208.3                          | 211.7                                                           |  |  |  |  |  |  |
| Specific Gravity = (B-A)/((D-A)-(C-B))                       | 2.597                          | 2.667                                                           |  |  |  |  |  |  |
| Average Value                                                |                                | 2.632                                                           |  |  |  |  |  |  |
|                                                              |                                |                                                                 |  |  |  |  |  |  |
| Tested By :                                                  |                                | Verified By:                                                    |  |  |  |  |  |  |
| TRACEABLE MEASUREMEN'S                                       | Mart                           | Martin<br>Diffe                                                 |  |  |  |  |  |  |

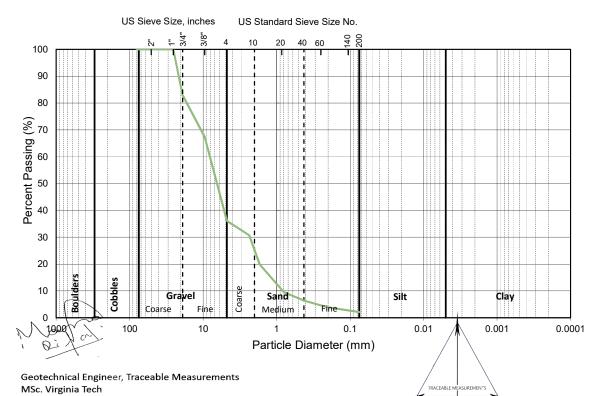
Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech



### **Project Information**

| Project Information        |        |           |  |  |
|----------------------------|--------|-----------|--|--|
| Project Name:              |        | MCA-Nepal |  |  |
| Project Number:            |        |           |  |  |
| Location:                  |        | TW-198    |  |  |
| Sample Information         |        |           |  |  |
| Borehole/Test Pit:         |        | BH-01     |  |  |
| Sample #:                  |        |           |  |  |
| Depth:                     |        | 0-1.5m    |  |  |
| Sample type:               |        |           |  |  |
| Sampled by:                |        |           |  |  |
| Laboratory Comments/0      | Observ | ations    |  |  |
| Testing Information        |        |           |  |  |
| Pan ID                     |        |           |  |  |
| Mass of moist soil + pan ( | (g)    |           |  |  |
| Mass of dry soil + pan (g) |        |           |  |  |
| Mass of pan (g)            |        |           |  |  |
| Mass of dry soil (g)       |        | 477.00    |  |  |
| Mass of washed soil (g)    |        |           |  |  |
| Mass loss in wash (g)      |        |           |  |  |
| Summary Parameter          |        |           |  |  |
| Coarser than Gravel%       |        | 0         |  |  |
| Gravel%                    |        | 69        |  |  |
| Sand%                      |        | 29        |  |  |
| Fines%                     |        | 2<br>7.19 |  |  |
| D60, mm:                   |        | -         |  |  |
| D30, mm:                   |        | 3.22      |  |  |
| D10, mm:                   |        | 0.82      |  |  |
| Cc:                        |        | 1.75      |  |  |
| Cu:                        |        | 8.72      |  |  |

| Laboratory Information |                                 |  |  |  |  |
|------------------------|---------------------------------|--|--|--|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |  |  |  |
| Tested By:             |                                 |  |  |  |  |
| Reviewed By:           |                                 |  |  |  |  |
| Test Date:             |                                 |  |  |  |  |
| Report Date:           |                                 |  |  |  |  |


# Preparation Method: Oven Dry Air D



| S.N           | (mm)  | Wt Ret | % Ret | Cum %<br>Ret | % Pass |
|---------------|-------|--------|-------|--------------|--------|
| 1             | 80    | 0.00   | 0.00  | 0.00         | 100.00 |
| 2             | 38.1  | 0.00   | 0.00  | 0.00         | 100.00 |
| 3             | 25.4  | 0.00   | 0.00  | 0.00         | 100.00 |
| 4             | 19.1  | 81.00  | 16.98 | 16.98        | 83.02  |
| 5             | 9.5   | 74.70  | 15.66 | 32.64        | 67.36  |
| 6             | 4.75  | 148.90 | 31.22 | 63.86        | 36.14  |
| 7             | 2.36  | 25.7   | 5.39  | 69.25        | 30.75  |
| 8             | 1.70  | 51.8   | 10.86 | 80.10        | 19.90  |
| 9             | 0.8   | 49.2   | 10.31 | 90.42        | 9.58   |
| 10            | 0.425 | 15.4   | 3.23  | 93.65        | 6.35   |
| 11            | 0.20  | 11.9   | 2.49  | 96.14        | 3.86   |
| 12            | 0.15  | 2.2    | 0.46  | 96.60        | 3.40   |
| 13            | 0.075 | 6.1    | 1.28  | 97.88        | 2.12   |
| Pan           |       | 10.1   |       |              |        |
| Tot Pan       |       | 10.10  | 2.12  | 100.00       | 0.00   |
| Fineness Mod. |       |        |       | 6.40         |        |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

### Well Graded Gravel with Sand

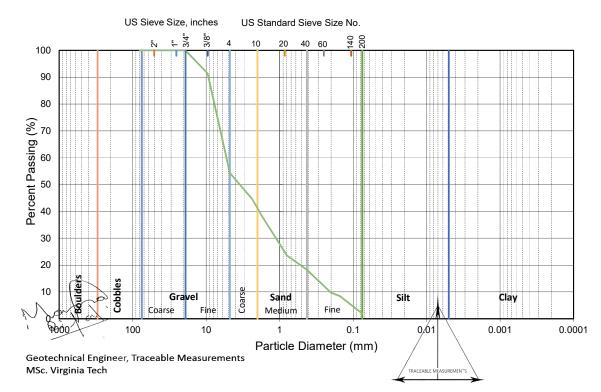




### **Project Information**

| Project Name:              | MCA-Nepal    |  |  |
|----------------------------|--------------|--|--|
| Project Number:            |              |  |  |
| Location:                  | TW-198       |  |  |
| Sample Information         |              |  |  |
| Borehole/Test Pit:         | BH-01        |  |  |
| Sample #:                  |              |  |  |
| Depth:                     | 1.5m - 4.5m  |  |  |
| Sample type:               |              |  |  |
| Sampled by:                |              |  |  |
| Laboratory Comments/0      | Observations |  |  |
| Testing Information        |              |  |  |
| Pan ID                     |              |  |  |
| Mass of moist soil + pan ( | (q)          |  |  |
| Mass of dry soil + pan (g) |              |  |  |
| Mass of pan (g)            |              |  |  |
| Mass of dry soil (g)       | 899.40       |  |  |
| Mass of washed soil (g)    |              |  |  |
| Mass loss in wash (g)      |              |  |  |
| Summary Parameter          |              |  |  |
| Coarser than Gravel%       | 0            |  |  |
| Gravel%                    | 55           |  |  |
| Sand%                      | 43           |  |  |
| Fines%                     | 2            |  |  |
| D60, mm:                   | 3.73         |  |  |
| D30, mm:                   | 1.12         |  |  |
| D10, mm:                   | 0.21         |  |  |
| Cc:                        | 1.64         |  |  |
| Cu:                        | 18.16        |  |  |

| Laboratory Information |                                 |  |
|------------------------|---------------------------------|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |
| Tested By:             |                                 |  |
| Reviewed By:           |                                 |  |
| Test Date:             |                                 |  |
| Report Date:           |                                 |  |


Preparation Method: Oven Dry Air Dry



| S.N           | (mm)  | Wt Ret  | % Ret | Cum %<br>Ret | % Pass |
|---------------|-------|---------|-------|--------------|--------|
| 1             | 80    | 0.0     | 0.00  | 0.00         | 100.00 |
| 2             | 38.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 3             | 25.4  | 0.0     | 0.00  | 0.00         | 100.00 |
| 4             | 19.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 5             | 9.5   | 77.9    | 8.66  | 8.66         | 91.34  |
| 6             | 4.75  | 333.3   | 37.06 | 45.72        | 54.28  |
| 7             | 2.36  | 86.800  | 9.65  | 55.37        | 44.63  |
| 8             | 1.70  | 61.300  | 6.82  | 62.19        | 37.81  |
| 9             | 0.8   | 127.200 | 14.14 | 76.33        | 23.67  |
| 10            | 0.425 | 49.400  | 5.49  | 81.82        | 18.18  |
| 11            | 0.20  | 76.400  | 8.49  | 90.32        | 9.68   |
| 12            | 0.15  | 12.000  | 1.33  | 91.65        | 8.35   |
| 13            | 0.075 | 57.900  | 6.44  | 98.09        | 1.91   |
| Pan           |       | 17.200  |       |              |        |
| Tot Pan       |       | 17.20   | 1.91  | 100.00       | 0.00   |
| Fineness Mod. |       |         |       | 5.12         |        |

Classification of Soils as per USCS, ASTM designation D 2487-06

Well Graded Gravel with Sand

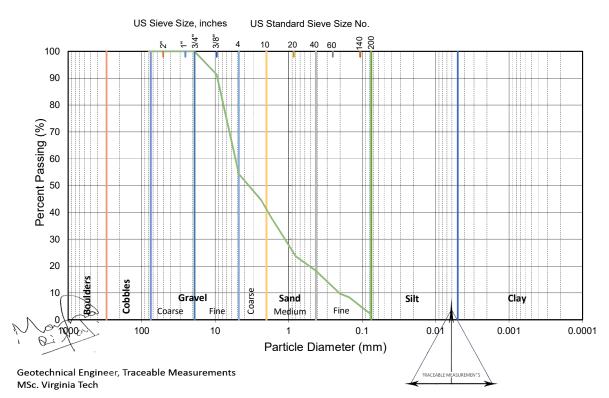




### **Project Information**

| Project Name:                | MCA-Nepal  |
|------------------------------|------------|
| Project Number:              |            |
| Location:                    | TW-198     |
| Sample Information           |            |
| Borehole/Test Pit:           | BH-01      |
| Sample #:                    |            |
| Depth:                       | 4.5m-6m    |
| Sample type:                 |            |
| Sampled by:                  |            |
| Laboratory Comments/Obs      | servations |
| Testing Information          |            |
| Pan ID                       |            |
| Mass of moist soil + pan (g) |            |
| Mass of dry soil + pan (g)   |            |
| Mass of pan (g)              |            |
| Mass of dry soil (g)         | 377.40     |
| Mass of washed soil (g)      |            |
| Mass loss in wash (g)        |            |
| Summary Parameter            | -          |
| Coarser than Gravel%         | 0          |
| Gravel%                      | 67         |
| Sand%<br>Fines%              | 28         |
|                              | 4.90       |
| D60, mm:<br>D30, mm:         | 2.32       |
| D30, mm:                     | -          |
| Cc:                          | 0.29       |
| Cu:                          | 16.72      |
|                              | 10.72      |

| Laboratory Information |                                 |  |
|------------------------|---------------------------------|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |
| Tested By:             |                                 |  |
| Reviewed By:           |                                 |  |
| Test Date:             |                                 |  |
| Report Date:           |                                 |  |


Preparation Method: Oven Dry Air Dry



| S.N           | (mm)  | Wt Ret | % Ret | Cum %<br>Ret | % Pass |
|---------------|-------|--------|-------|--------------|--------|
| 1             | 80    | 0.0    | 0.00  | 0.00         | 100.00 |
| 2             | 38.1  | 0.0    | 0.00  | 0.00         | 100.00 |
| 3             | 25.4  | 0.0    | 0.00  | 0.00         | 100.00 |
| 4             | 19.1  | 0.0    | 0.00  | 0.00         | 100.00 |
| 5             | 9.5   | 57.6   | 15.26 | 15.26        | 84.74  |
| 6             | 4.75  | 166.2  | 44.04 | 59.30        | 40.70  |
| 7             | 2.36  | 29.800 | 7.90  | 67.20        | 32.80  |
| 8             | 1.70  | 28.000 | 7.42  | 74.62        | 25.38  |
| 9             | 0.8   | 36.700 | 9.72  | 84.34        | 15.66  |
| 10            | 0.425 | 14.400 | 3.82  | 88.16        | 11.84  |
| 11            | 0.20  | 14.100 | 3.74  | 91.89        | 8.11   |
| 12            | 0.15  | 3.200  | 0.85  | 92.74        | 7.26   |
| 13            | 0.075 | 9.000  | 2.38  | 95.12        | 4.88   |
| Pan           |       | 18.400 |       |              |        |
| Tot Pan       |       | 18.40  | 4.88  | 100.00       | 0.00   |
| Fineness Mod. |       |        |       | 5.74         |        |

Classification of Soils as per USCS, ASTM designation D 2487-06

Well Graded Gravel with Silt and Sand

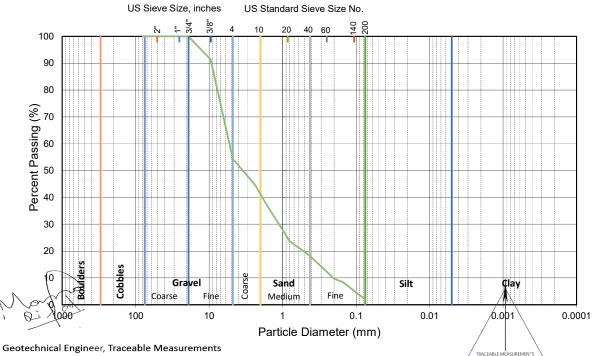




### **Project Information**

| Project Name:                             | MCA-Nepal   |
|-------------------------------------------|-------------|
| Project Number:                           |             |
| Location:                                 | TW-198      |
| Sample Information                        |             |
| Borehole/Test Pit:                        | BH-01       |
| Sample #:                                 |             |
| Depth:                                    | 6m-9m       |
| Sample type:                              |             |
| Sampled by:                               |             |
| Laboratory Comments/O                     | bservations |
|                                           |             |
|                                           |             |
| Testing Information                       | -           |
| Pan ID                                    |             |
| Mass of moist soil + pan (g               | 1)          |
| Mass of dry soil + pan (g)                |             |
| Mass of pan (g)                           |             |
| Mass of dry soil (g)                      | 1248.90     |
| Mass of washed soil (g)                   |             |
| Mass loss in wash (g)                     |             |
| Summary Parameter<br>Coarser than Gravel% |             |
| Gravel%                                   | 0           |
| Sand%                                     | 61          |
| Fines%                                    | 4           |
| D60, mm:                                  | 3.80        |
| D30, mm:                                  | 1.37        |
| D10, mm:                                  | 0.12        |
| Cc:                                       | 3.98        |
| Cu:                                       | 30.66       |
| -                                         | 00.00       |

| Laboratory Information |                                 |  |
|------------------------|---------------------------------|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |
| Tested By:             |                                 |  |
| Reviewed By:           |                                 |  |
| Test Date:             |                                 |  |
| Report Date:           |                                 |  |


Preparation Method: Oven Dry Air Dry



| S.N           | (mm)  | Wt Ret  | % Ret | Cum %<br>Ret | % Pass |
|---------------|-------|---------|-------|--------------|--------|
| 1             | 80    | 0.0     | 0.00  | 0.00         | 100.00 |
| 2             | 38.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 3             | 25.4  | 0.0     | 0.00  | 0.00         | 100.00 |
| 4             | 19.1  | 0.0     | 0.00  | 0.00         | 100.00 |
| 5             | 9.5   | 0.0     | 0.00  | 0.00         | 100.00 |
| 6             | 4.75  | 634.7   | 50.82 | 50.82        | 49.18  |
| 7             | 2.36  | 123.600 | 9.90  | 60.72        | 39.28  |
| 8             | 1.70  | 74.500  | 5.97  | 66.68        | 33.32  |
| 9             | 0.8   | 144.200 | 11.55 | 78.23        | 21.77  |
| 10            | 0.425 | 54.200  | 4.34  | 82.57        | 17.43  |
| 11            | 0.20  | 54.000  | 4.32  | 86.89        | 13.11  |
| 12            | 0.15  | 12.100  | 0.97  | 87.86        | 12.14  |
| 13            | 0.075 | 96.800  | 7.75  | 95.61        | 4.39   |
| Pan           |       | 54.800  |       |              |        |
| Tot Pan       |       | 54.80   | 4.39  | 100.00       | 0.00   |
| Fineness Mod. |       |         |       | 5.14         |        |

Classification of Soils as per USCS, ASTM designation D 2487-06

Well Graded Gravel with Sand



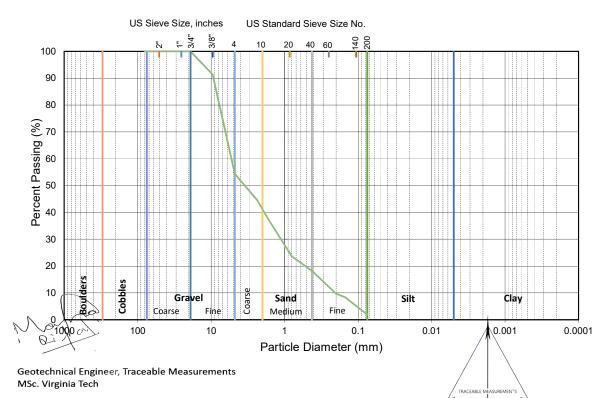
MSc. Virginia Tech



### **Project Information**

| Froject information        |        |               |
|----------------------------|--------|---------------|
| Project Name:              |        | MCA-Nepal     |
| Project Number:            |        |               |
| Location:                  |        | TW-198        |
| Sample Information         |        |               |
| Borehole/Test Pit:         |        | BH-01         |
| Sample #:                  |        |               |
| Depth:                     |        | 9m-10m        |
| Sample type:               |        |               |
| Sampled by:                |        |               |
| Laboratory Comments/       | Observ | ations        |
|                            |        |               |
| Testing Information        |        |               |
| Pan ID                     |        |               |
| Mass of moist soil + pan   | (g)    |               |
| Mass of dry soil + pan (g) | )      |               |
| Mass of pan (g)            |        |               |
| Mass of dry soil (g)       |        | 594.30        |
| Mass of washed soil (g)    |        |               |
| Mass loss in wash (g)      |        |               |
| Summary Parameter          |        |               |
| Coarser than Gravel%       |        | 0             |
| Gravel%                    |        | 68            |
| Sand%<br>Fines%            |        | 27            |
|                            |        | 5<br>4.46     |
| D60, mm:                   |        | 2.05          |
| D30, mm:<br>D10, mm:       |        |               |
| D10, mm:<br>Cc:            |        | 0.29          |
| Cu:                        |        | 3.23<br>15.34 |
| оч.<br>                    |        | 10.04         |

| Laboratory Information |                                 |  |
|------------------------|---------------------------------|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |
| Tested By:             |                                 |  |
| Reviewed By:           |                                 |  |
| Test Date:             |                                 |  |
| Report Date:           |                                 |  |


# Preparation Method: Oven Dry Air Dry



| S.N      | (mm)   | Wt Ret | % Ret | Cum %<br>Ret | % Pass |  |
|----------|--------|--------|-------|--------------|--------|--|
| 1        | 80     | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 2        | 38.1   | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 3        | 25.4   | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 4        | 19.1   | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 5        | 9.5    | 39.2   | 6.60  | 6.60         | 93.40  |  |
| 6        | 6 4.75 |        | 53.02 | 59.62        | 40.38  |  |
| 7        | 7 2.36 |        | 8.45  | 68.06        | 31.94  |  |
| 8        | 1.70   | 25.100 | 4.22  | 72.29        | 27.71  |  |
| 9        | 0.8    | 66.300 | 11.16 | 83.44        | 16.56  |  |
| 10       | 0.425  | 26.900 | 4.53  | 87.97        | 12.03  |  |
| 11       | 0.20   | 24.000 | 4.04  | 92.01        | 7.99   |  |
| 12       | 0.15   | 5.400  | 0.91  | 92.92        | 7.08   |  |
| 13       | 0.075  | 14.800 | 2.49  | 95.41        | 4.59   |  |
| Pan      | Pan    |        |       |              |        |  |
| Tot Pan  |        | 27.30  | 4.59  | 100.00       | 0.00   |  |
| Fineness | Mod.   |        |       | 5.63         |        |  |

#### Classification of Soils as per USCS, ASTM designation D 2487-06

Well Graded Gravel with Silt and Sand

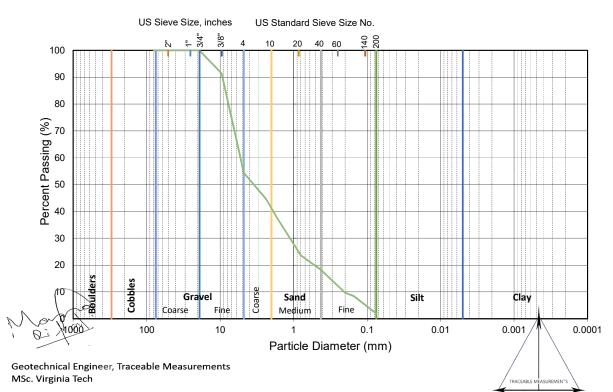




### **Project Information**

| Project information        |              |
|----------------------------|--------------|
| Project Name:              | MCA-Nepal    |
| Project Number:            |              |
| Location:                  | TW-198       |
| Sample Information         |              |
| Borehole/Test Pit:         | BH-01        |
| Sample #:                  |              |
| Depth:                     | 10m-12m      |
| Sample type:               |              |
| Sampled by:                |              |
| Laboratory Comments/0      | Observations |
|                            |              |
| Testing Information        |              |
| Pan ID                     |              |
| Mass of moist soil + pan ( | (g)          |
| Mass of dry soil + pan (g) |              |
| Mass of pan (g)            |              |
| Mass of dry soil (g)       | 393.00       |
| Mass of washed soil (g)    |              |
| Mass loss in wash (g)      |              |
| Summary Parameter          |              |
| Coarser than Gravel%       | 0            |
| Gravel%                    | 72           |
| Sand%                      | 24           |
| Fines%                     | 4            |
| D60, mm:                   | 5.01         |
| D30, mm:                   | 2.27         |
| D10, mm:                   | 0.33         |
| Cc:                        | 3.17         |
| Cu:                        | 15.34        |

| Laboratory Information |                                 |  |  |  |  |  |  |  |  |
|------------------------|---------------------------------|--|--|--|--|--|--|--|--|
| Lab Name:              | Traceable Measurement Pvt. Ltd. |  |  |  |  |  |  |  |  |
| Tested By:             |                                 |  |  |  |  |  |  |  |  |
| Reviewed By:           |                                 |  |  |  |  |  |  |  |  |
| Test Date:             |                                 |  |  |  |  |  |  |  |  |
| Report Date:           |                                 |  |  |  |  |  |  |  |  |


Preparation Method: Oven Dry Air Dry



| S.N      | (mm)      | Wt Ret | % Ret | Cum %<br>Ret | % Pass |  |
|----------|-----------|--------|-------|--------------|--------|--|
| 1        | 80        | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 2        | 38.1      | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 3        | 25.4      | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 4        | 19.1      | 0.0    | 0.00  | 0.00         | 100.00 |  |
| 5        | 9.5       | 51.0   | 12.98 | 12.98        | 87.02  |  |
| 6        | 6 4.75 17 |        | 45.42 | 58.40        | 41.60  |  |
| 7        | 2.36 51   |        | 13.21 | 71.60        | 28.40  |  |
| 8        | 1.70      | 11.700 | 2.98  | 74.58        | 25.42  |  |
| 9        | 0.8       | 40.000 | 10.18 | 84.76        | 15.24  |  |
| 10       | 0.425     | 15.300 | 3.89  | 88.65        | 11.35  |  |
| 11       | 0.20      | 15.100 | 3.84  | 92.49        | 7.51   |  |
| 12       | 0.15      | 4.000  | 1.02  | 93.51        | 6.49   |  |
| 13       | 0.075     | 9.100  | 2.32  | 95.83        | 4.17   |  |
| Pan      | Pan       |        |       |              |        |  |
| Tot Pan  |           | 16.40  | 4.17  | 100.00       | 0.00   |  |
| Fineness | Mod.      |        |       | 5.77         |        |  |

Classification of Soils as per USCS, ASTM designation D 2487-06

Well Graded Gravel with Sand





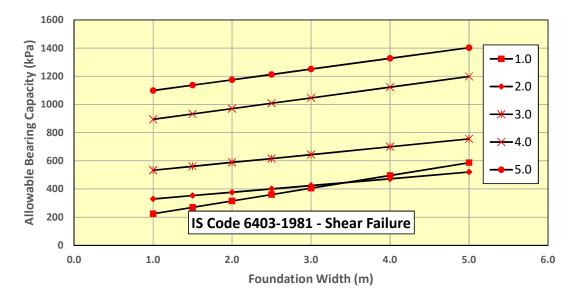
| Location<br>Bore Hole No<br>Bore Hole Depth                                                                | ::                   | TW-198<br>1<br>7.5m               |                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRG factor:<br>Area:                                          | 0.002312<br>0.0036              |                             |
|------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|--------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|-----------------------------|
| Hz Dial Gauge<br>reading (x<br>0.01mm)                                                                     | Normal<br>Strain (%) | Normal Stress (<br>Load Ring Dial | Shear<br>Stress    | Normal Stres<br>Load Ring<br>Dial          | ss (100 kN/m <sup>2</sup> )<br>Shear<br>Stress(KN/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Normal Stress (<br>Load Ring Dial                             | Shear<br>Stress                 | Remarl                      |
| ,<br>                                                                                                      | 0%                   | 0                                 | $(KN/m^2)$<br>0.00 |                                            | ) 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                             | (KN/m <sup>2</sup> )<br>0.00    |                             |
| 0 25                                                                                                       | 0%                   | 18                                | 11.56              | 0 37                                       | 23.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57                                                            | 36.61                           |                             |
| 50                                                                                                         | 0.8%                 | 21                                | 13.49              | 47                                         | 30.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                            | 51.38                           |                             |
| 75                                                                                                         | 1%                   | 23                                | 14.77              | 53                                         | 34.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93                                                            | 59.73                           |                             |
| 100                                                                                                        | 1.7%                 | 26                                | 16.70              | 57                                         | 36.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103                                                           | 66.15                           |                             |
| 125                                                                                                        | 2.1%                 | 29                                | 18.62              | 61                                         | 39.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112                                                           | 71.93                           |                             |
| 150                                                                                                        | 3%                   | 30                                | 19.27              | 64                                         | 41.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119                                                           | 76.42                           |                             |
| 175                                                                                                        | 2.9%                 | 33                                | 21.19              | 67                                         | 43.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 126                                                           | 80.92                           |                             |
| 200 250                                                                                                    | 3.3%                 | 35<br>37                          | 22.48<br>23.76     | 70 75                                      | 44.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131<br>144                                                    | 84.13<br>92.48                  |                             |
| 300                                                                                                        | 5.0%                 | 37                                | 23.76              | 73                                         | 48.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 144                                                           | 92.48                           |                             |
| 350                                                                                                        | 5.8%                 | 41                                | 26.33              | 80                                         | 51.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                                                           | 102.76                          |                             |
| 400                                                                                                        | 7%                   | 42                                | 26.97              | 83                                         | 53.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 168                                                           | 107.89                          |                             |
| 450                                                                                                        | 7.5%                 | 44                                | 28.26              | 86                                         | 55.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 174                                                           | 111.75                          |                             |
| 500                                                                                                        | 8.3%                 | 45                                | 28.90              | 87                                         | 55.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 181                                                           | 116.24                          |                             |
| 550                                                                                                        | 9.2%                 | 47                                | 30.18              | 87                                         | 55.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 185                                                           | 118.81                          |                             |
| 600<br>700                                                                                                 | 10%<br>11.7%         | 48 50                             | 30.83<br>32.11     | 88<br>90                                   | 56.52<br>57.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 189<br>195                                                    | 121.38<br>125.23                |                             |
| 800                                                                                                        | 13.3%                | 51                                | 32.11              | 90                                         | 58.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 195                                                           | 123.23                          |                             |
| 900                                                                                                        | 15:576               | 53<br>53                          | 34.04              | 93<br>95                                   | 59.73<br>61.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 203                                                           | 130.37                          |                             |
| 1000                                                                                                       | 16.7%                |                                   | 34.04              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205                                                           | 131.66                          |                             |
| 1100                                                                                                       | 18.3%                |                                   |                    | 96                                         | 61.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 207                                                           | 132.94                          |                             |
| 1200                                                                                                       | 20%                  |                                   |                    | 99                                         | 63.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 208                                                           | 133.58                          |                             |
| 1300                                                                                                       | 21.7%                |                                   |                    | 100                                        | 64.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 211                                                           | 135.51                          |                             |
| 1400                                                                                                       | 23.3%<br>25%         |                                   |                    | 100                                        | 64.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 214 215                                                       | 137.44<br>138.08                |                             |
| 1600                                                                                                       | 25.7%                |                                   |                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 215                                                           | 138.08                          |                             |
| 200.0<br>150.0<br>150.0<br>100.0<br>Substant Stress<br>50.0<br>0.0<br>160.00<br>140.00<br>120.00<br>120.00 |                      | <b></b>                           | 00.0 250           | 0.0 300.0                                  | 160<br>(e) 140<br>(e) 120<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsections<br>100<br>subsection | 50 kPa<br>100 kPa<br>200 kPa<br>0.0 1.0 2.0 3.0 2<br>Shear di | 4.0 5.0 6.0 7,<br>splacement () | 0 8.0 9.0 1<br>mm)          |
| 2000 2000 2000 2000 2000 2000 2000 200                                                                     | 3% 6%                | 9% 12% 15%<br>Strain              | ) 18% 21<br>%)     | Series1<br>100 kPa<br>200 kPa<br>% 24% 27% | 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | φ'<br>c'                                                      | 33<br>0.00                      | Degree<br>kN/m <sup>2</sup> |
| echnical Engineer                                                                                          | Traceable Me         | մահո                              | <u>tinh</u>        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                               |                                 |                             |



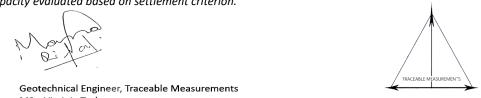
| Project Name<br>Location<br>Bore Hole No<br>Bore Hole Depth                                                                                       | ::                   | MCA-Nepal<br>TW-198<br>1<br>10m - 12m |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRG factor:<br>Area:              | 0.002312<br>0.0036                                                 |                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Hz Dial Gauge<br>reading (x<br>0.01mm)                                                                                                            | Normal<br>Strain (%) | Normal Stress (<br>Load Ring Dial     | 50kN/m <sup>2</sup> )<br>Shear<br>Stress<br>(KN/m <sup>2</sup> ) | Normal Stres<br>Load Ring<br>Dial | s (100 kN/m <sup>2</sup> )<br>Shear<br>Stress(KN/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Normal Stress (<br>Load Ring Dial | 200 kN/m <sup>2</sup> )<br>Shear<br>Stress<br>(KN/m <sup>2</sup> ) | Remarks                                                                       |
| 0                                                                                                                                                 | 0%                   | 0                                     | 0.00                                                             | 0                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                 | 0.00                                                               |                                                                               |
| 25                                                                                                                                                | 0.4%                 | 21                                    | 13.49                                                            | 31                                | 19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                | 34.04                                                              |                                                                               |
| 50                                                                                                                                                | 0.8%                 | 28                                    | 17.98                                                            | 47                                | 30.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76                                | 48.81                                                              |                                                                               |
| 75                                                                                                                                                | 1%                   | 32                                    | 20.55                                                            | 53                                | 34.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                | 61.01                                                              |                                                                               |
| 100                                                                                                                                               | 1.7%                 | 35                                    | 22.48                                                            | 60                                | 38.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 110                               | 70.64                                                              |                                                                               |
| 125                                                                                                                                               | 2.1%                 | 39                                    | 25.05                                                            | 65                                | 41.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121                               | 77.71                                                              |                                                                               |
| 150                                                                                                                                               | 3%                   | 41                                    | 26.33                                                            | 71                                | 45.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 132                               | 84.77                                                              |                                                                               |
| 175                                                                                                                                               | 2.9%                 | 43                                    | 27.62                                                            | 75                                | 48.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 141                               | 90.55                                                              |                                                                               |
| 200                                                                                                                                               | 3.3%                 | 44                                    | 28.26                                                            | 79                                | 50.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 143                               | 91.84                                                              |                                                                               |
| 250                                                                                                                                               | 4%                   | 47                                    | 30.18                                                            | 86                                | 55.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 163                               | 104.68                                                             |                                                                               |
| 300                                                                                                                                               | 5.0%                 | 50                                    | 32.11                                                            | 91                                | 58.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176                               | 113.03                                                             |                                                                               |
| 350<br>400                                                                                                                                        | 5.8%                 | 52<br>53                              | 33.40<br>34.04                                                   | <u>95</u><br>98                   | 61.01<br>62.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 188<br>195                        | 120.74<br>125.23                                                   |                                                                               |
| 400                                                                                                                                               | 7.5%                 | 53                                    | 34.04                                                            | 98                                | 62.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                               | 125.23                                                             |                                                                               |
| 500                                                                                                                                               | 8.3%                 | 55                                    | 35.32                                                            | 101                               | 64.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                               | 128.44                                                             |                                                                               |
| 550                                                                                                                                               | 9.2%                 | 57                                    | 36.61                                                            | 105                               | 67.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 204                               | 132.94                                                             |                                                                               |
| 600                                                                                                                                               | 10%                  | 58                                    | 37.25                                                            | 107                               | 68.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 209                               | 134.22                                                             |                                                                               |
| 700                                                                                                                                               | 11.7%                | 59                                    | 37.89                                                            | 109                               | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 210                               | 134.87                                                             |                                                                               |
| 800                                                                                                                                               | 13.3%                | 61                                    | 39.18                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 212                               | 136.15                                                             |                                                                               |
| 900                                                                                                                                               | 15%                  | 62                                    | 39.82                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 216                               | 138.72                                                             |                                                                               |
| 1000                                                                                                                                              | 16.7%                | 60                                    | 38.53                                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 221                               | 141.93                                                             |                                                                               |
| 1100                                                                                                                                              | 18.3%                |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 225                               | 144.50                                                             |                                                                               |
| 1200                                                                                                                                              | 20%                  |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 227                               | 145.78                                                             |                                                                               |
| 1300                                                                                                                                              | 21.7%                |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                    |                                                                               |
| 1400                                                                                                                                              | 23.3%                |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                    |                                                                               |
| 1500                                                                                                                                              | 25%                  |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                    |                                                                               |
| 1600                                                                                                                                              | 26.7%                |                                       |                                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                                    |                                                                               |
| 150.0<br>100.0<br>100.0<br>0.0<br>160.00<br>160.00<br>140.00<br>140.00<br>100.00<br>0.0<br>160.00<br>0.0<br>100.00<br>0.0<br>100.00<br>0.0<br>0.0 | 50.0 10              | ·····                                 | <b>9</b><br>00.0 250<br>)                                        | 0.0 300.0                         | (Figure 140)<br>(Figure 120)<br>(Figure 120)<br>(Figu |                                   | 4.0 6.0<br>splacement (<br>34<br>0.00                              | 50 kPa<br>100 kPa<br>200 kPa<br>8.0<br>mm) 10.<br>Degree<br>kN/m <sup>2</sup> |
| 20.00<br>0.00<br>0%                                                                                                                               | 3%                   | 6% 9%<br>Strain (                     |                                                                  | 5% 18%                            | 21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                                                    |                                                                               |

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

 $\mathcal{N}$ 


# Soil Investigation Works of Consulting Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal *Bearing capacity analysis of the Shallow Foundation*

This calculation based on the IS:6403-1981. The allowable bearing capacity is based on the shear failure of soil. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.


| <u>Bore Hole No T198N</u>                        | -     |       |       |       |       |
|--------------------------------------------------|-------|-------|-------|-------|-------|
| Depth of Foundation, $D_f(m)$                    | 1.0   | 2.0   | 3.0   | 4.0   | 5.0   |
| Friction angle                                   | 32    | 32    | 33    | 35    | 35    |
| SPT N Value                                      | 33    | 33    | 43    | 50    | 50    |
| Unit wt. of soil, kN/m <sup>3</sup>              | 18    | 19    | 19    | 19    | 19    |
| Buoyant Unit wt. of soil. kN/m <sup>3</sup>      | 8     | 9     | 9     | 9     | 9     |
| Cohesion. kN/m <sup>2</sup>                      | 0     | 0     | 0     | 0     | 0     |
| Water Reduction Factor $W_{\boldsymbol{\gamma}}$ | 1     | 0.5   | 0.5   | 0.5   | 0.5   |
| Nq                                               | 23.18 | 23.18 | 26.09 | 33.30 | 33.30 |
| N <sub>c</sub>                                   | 35.49 | 35.49 | 38.64 | 46.12 | 46.12 |
| N <sub>v</sub>                                   | 30.21 | 30.21 | 35.19 | 48.03 | 48.03 |

### New Butwal - New Damauli 400 kV D/C TL

|                                         | Net Allowable Bearing, kN/m <sup>2</sup> (IS: 6403-1981 Shear<br>Failure ) |     |     |      |      |  |  |  |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------------|-----|-----|------|------|--|--|--|--|--|--|
| Depth of Foundation, D <sub>f</sub> (m) | 1.0                                                                        | 2.0 | 3.0 | 4.0  | 5.0  |  |  |  |  |  |  |
| Width of foundation, B (m)              |                                                                            | -   |     |      |      |  |  |  |  |  |  |
| 1.0                                     | 224                                                                        | 329 | 532 | 894  | 1099 |  |  |  |  |  |  |
| 1.5                                     | 269                                                                        | 353 | 560 | 932  | 1137 |  |  |  |  |  |  |
| 2.0                                     | 314                                                                        | 377 | 588 | 970  | 1175 |  |  |  |  |  |  |
| 2.5                                     | 360                                                                        | 401 | 616 | 1008 | 1213 |  |  |  |  |  |  |
| 3.0                                     | 405                                                                        | 424 | 644 | 1046 | 1251 |  |  |  |  |  |  |
| 4.0                                     | 496                                                                        | 472 | 700 | 1122 | 1327 |  |  |  |  |  |  |
| 5.0                                     | 586                                                                        | 520 | 755 | 1198 | 1403 |  |  |  |  |  |  |



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion. Please refer to bearing capacity evaluated based on settlement criterion.



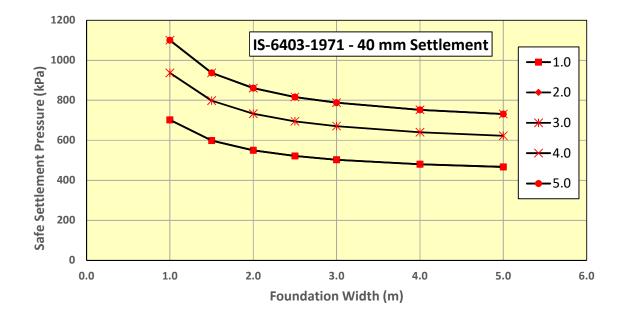
# Soil Investigation Works of Consulting Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal Bearing capacity analysis of the Shallow Foundation

This calculation based on the IS:6403-1971. The allowable bearing capacity is based on the settlement of 40 mm. The effective internal angle of friction is adopted either from direct shear test result or empirical correlation or approximated using engineering judgement and experience between SPT N value and angle of friction.

0.5

0.5

| <u>New Butwal - New Damauli 400</u>     | <u>kV D/C TL</u> |     |     |     |     |
|-----------------------------------------|------------------|-----|-----|-----|-----|
| <u>Bore Hole No T198N</u>               |                  |     |     |     |     |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0              | 2.0 | 3.0 | 4.0 | 5.0 |
| Friction angle                          | 32               | 32  | 33  | 35  | 35  |
| SPT N Value                             | 33               | 33  | 43  | 50  | 50  |
| Unit wt of soil kN/m3                   | 18               | 19  | 19  | 19  | 19  |
|                                         |                  |     |     |     |     |


1

# 

Water Reduction Factor Wy

|                                         | Net Allow   | able Beariı | ng, kN/m² ( | IS:6403-197 | 71-40 mm |  |  |  |  |  |
|-----------------------------------------|-------------|-------------|-------------|-------------|----------|--|--|--|--|--|
|                                         | Settlement) |             |             |             |          |  |  |  |  |  |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0         | 2.0         | 3.0         | 4.0         | 5.0      |  |  |  |  |  |
| Width of foundation, B (m)              |             |             | -           |             |          |  |  |  |  |  |
| 1.0                                     | 702         | 702         | 936         | 1100        | 1100     |  |  |  |  |  |
| 1.5                                     | 598         | 598         | 798         | 937         | 937      |  |  |  |  |  |
| 2.0                                     | 549         | 549         | 733         | 861         | 861      |  |  |  |  |  |
| 2.5                                     | 521         | 521         | 695         | 817         | 817      |  |  |  |  |  |
| 3.0                                     | 503         | 503         | 670         | 788         | 788      |  |  |  |  |  |
| 4.0                                     | 480         | 480         | 640         | 752         | 752      |  |  |  |  |  |
| 5.0                                     | 467         | 467         | 622         | 731         | 731      |  |  |  |  |  |

0.5



Note: For footing size greater than 2 m bearing capacity is usually governed by settlement criterion.



Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech



0.5

# Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal Bearing capacity analysis of the Mat foundation

This calculation is based on the SPT N-value.

# Bore Hole No. - T198N

# Safe Settlement Bearing Pressure kN/m<sup>2</sup> (IS:6403-65 mm Settlement)

| Depth of Foundation, D <sub>f</sub> (m) | 1     | 3     | 4     | 6     | 7     | 9     | 10    | 10    |
|-----------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| SPT N Value                             | 33    | 43    | 50    | 86    | 100   | 94    | 83    | 100   |
| Unit wt of soil kN/m3                   | 18    | 19    | 19    | 19    | 19    | 19    | 19    | 19    |
| Water Reduction Factor Wy               | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   | 0.5   |
|                                         |       | -     |       |       |       |       |       |       |
| Depth of Foundation, D <sub>f</sub> (m) | 1.0   | 3.0   | 4.0   | 6.0   | 7.0   | 9.0   | 10.0  | 10.0  |
| Safe Settlement Bearing                 | 381   | 508   | 597   | 1054  | 1232  | 1156  | 1016  | 1232  |
| Pressure, kN/m <sup>2</sup>             | 301   | 508   | 557   | 1054  | 1252  | 1150  | 1010  | 1252  |
| Modulus of Subgrade Reaction,           | 20490 | 10610 | 47750 | 04220 | 00550 | 02456 | 01200 | 00550 |
| Ks (kN/m <sup>3</sup> )                 | 30480 | 40640 | 47752 | 84328 | 98552 | 92456 | 81280 | 98552 |

TRACEABLE MEASUREMEN

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech

Prepared By: Manab Rijal

Traceable Measurement (P) Ltd.

## Soil Investigation Works of Services & updated line Design for 30 km of Changes in 400kv Transmission Line Route Aligment of MCA-Nepal

| New But      | wal - New          | Damauli 40                       | <u>0 kV D/C</u>  | <u>TL</u>    | Borehole -   | <u>TW-198</u> |                    |         |                |         |                   |        |                     |                     |                     |                |                |      |
|--------------|--------------------|----------------------------------|------------------|--------------|--------------|---------------|--------------------|---------|----------------|---------|-------------------|--------|---------------------|---------------------|---------------------|----------------|----------------|------|
| Dep          | oth to GW          | NE                               | m                |              |              |               | Input              |         |                |         |                   |        |                     |                     |                     |                |                |      |
|              | PGA                | 0.3                              | g                |              |              | NE:           | Water <sup>-</sup> | Table n | ot Enc         | ountere | d                 |        |                     |                     |                     |                |                |      |
|              | Mw                 | 7.8                              |                  |              |              |               |                    |         |                |         |                   |        |                     |                     |                     |                |                |      |
|              | Pa                 | 101.3                            | kPA              |              |              |               |                    |         |                |         |                   |        |                     |                     |                     |                |                |      |
|              | L                  |                                  |                  |              |              |               |                    |         |                |         |                   |        |                     |                     |                     |                |                |      |
| Depth<br>(m) | N <sub>field</sub> | Total unit<br>wt. γ <sub>t</sub> | Fines<br>content | σ<br>(kN/m²) | u<br>(kN/m²) | σ'<br>(kN/m²) | α(z)               | β(z)    | r <sub>d</sub> | MSF     | N <sub>1,60</sub> | ΔN1,60 | N <sub>1,60cs</sub> | CSR <sub>M7.5</sub> | CRR <sub>M7.5</sub> | C <sub>σ</sub> | k <sub>σ</sub> | FS   |
|              |                    | (KN/m <sup>3</sup> )             |                  |              |              |               |                    |         |                |         |                   |        |                     |                     |                     |                |                |      |
| 1.0          | 33                 | 18.0                             | 2                | 18           | 0            | 18            | -0.03              | 0.00    | 1.00           | 0.92    | 47                | 0.00   | 47                  | 0.21                | 0.60                | 0.30           | 1.10           | NL-3 |
| 3.0          | 43                 | 19.0                             | 2                | 56           | 0            | 56            | -0.13              | 0.02    | 0.99           | 0.92    | 42                | 0.00   | 42                  | 0.21                | 0.60                | 0.30           | 1.10           | NL-3 |
| 4.0          | 50                 | 19.0                             | 2                | 75           | 0            | 75            | -0.20              | 0.02    | 0.98           | 0.92    | 45                | 0.00   | 45                  | 0.21                | 0.60                | 0.30           | 1.09           | NL-3 |
| 6.0          | 86                 | 19.0                             | 5                | 113          | 0            | 113           | -0.34              | 0.04    | 0.96           | 0.92    | 69                | 0.00   | 69                  | 0.20                | 0.60                | -0.43          | 1.05           | NL-3 |
| 7.0          | 100                | 19.0                             | 4                | 132          | 0            | 132           | -0.42              | 0.05    | 0.95           | 0.92    | 77                | 0.00   | 77                  | 0.20                | 0.60                | -0.28          | 1.07           | NL-3 |
| 9.0          | 94                 | 19.0                             | 4                | 170          | 0            | 170           | -0.59              | 0.07    | 0.93           | 0.92    | 68                | 0.00   | 68                  | 0.20                | 0.60                | -0.47          | 1.10           | NL-3 |
| 10.0         | 83                 | 19.0                             | 5                | 189          | 0            | 189           | -0.68              | 0.08    | 0.92           | 0.92    | 59                | 0.00   | 59                  | 0.19                | 0.60                | -1.57          | 1.10           | NL-3 |

Notes: 1) If above the water table, not subject to liquefaction

2) Fines content > 35%; Liquid Limit (LL) > 35%; and natural moisture content within 90% of the LL (i.e., 'Chinese Criteria'), not subject to liquefaction

3) Cyclical Resistance Ratio (CRR) equal to or greater than 0.5, not subject to liquefaction.

4) Clean sand  $(N1)_{60}$  equivalent equal to or greater than 34, not subject to liquefaction.

5) Fines content 50% or greater, not subject to liquefaction.

6) NL = Non-Liquefiable.

7) FS<1 indicates liquifiable soils.

TRACEABLE MEASUREMENTS

Geotechnical Engineer, Traceable Measurements MSc. Virginia Tech